No Arabic abstract
We highlight how guaranteed time observations (GTOs) and early release science (ERS) will advance understanding of exoplanet atmospheres and provide a glimpse into what transiting exoplanet science will be done with JWST during its first year of operations. These observations of 27 transiting planets will deliver significant insights into the compositions, chemistry, clouds, and thermal profiles of warm-to-hot gas-dominated planets well beyond what we have learned from HST, Spitzer, and other observatories to date. These data and insights will in turn inform our understanding of planet formation, atmospheric transport and climate, and relationships between various properties. Some insight will likely be gained into rocky planet atmospheres as well. JWST will be the most important mission for characterizing exoplanet atmospheres in the 2020s, and this should be considered in assessing exoplanet science for the 2020s and 2030s and future facilities.
We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $lambda = 1 - 11$ $mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $lambda = 1 - 2.5$ $mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature
A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Telescope. Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model - the JWST Exoplanet Transit Simulator (JETS) - we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally-resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid- to late-type M dwarfs at system distances of up to 10-15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.
In this research, 14 light curves of 10 hot Jupiter exoplanets available on Exoplanet Transit Database (ETD) were analyzed. We extracted the transit parameters using EXOFAST software. Finally, we compared the planets radius parameter calculated by the EXOFAST with the value at the NASA Exoplanet Archive (NEA) using the confidence interval method. According to the results obtained from this comparison, there is an acceptable match for the planets radius with NEA values. Also, based on the average value of 350 mm optics in this study, it shows that the results obtained using small telescopes can be very significant if there is appropriate observational skill to study more discovered planets.
The Mid-Infrared instrument (MIRI) on board the James Webb Space Telescope will perform the first ever characterization of young giant exoplanets observed by direct imaging in the 5-28 microns spectral range. This wavelength range is key for both determining the bolometric luminosity of the cool known exoplanets and for accessing the strongest ammonia bands. In conjunction with shorter wavelength observations, MIRI will enable a more accurate characterization of the exoplanetary atmospheric properties. Here we consider a subsample of the currently known exoplanets detected by direct imaging and we discuss their detectability with MIRI, either using the coronagraphic or the spectroscopic modes. By using the Exo-REM atmosphere model we calculate the mid-infrared emission spectra of fourteen exoplanets, and we simulate MIRI coronagraphic or spectroscopic observations. Specifically we analyze four coronagraphic observational setups, which depend on (i) the target-star and reference-star offset (0, 3, 14 mas), (ii) the wave-front-error (130, 204 nm rms), (iii) the telescope jitter amplitude (1.6, 7 mas). We then determine the signal-to-noise and integration time values for the coronagraphic targets whose planet-to-star contrasts range from 3.9 to 10.1 mag. We conclude that all the MIRI targets should be observable with different degrees of difficulty, which depends on the final in-flight instrument performances. Furthermore, we test for detection of ammonia in the atmosphere of the coolest targets. Finally, we present the case of HR 8799 b to discuss what MIRI observations can bring to the knowledge of a planetary atmosphere, either alone or in combination with shorter wavelength observations.
[Abridged] We have only been able to comprehensively characterize the atmospheres of a handful of transiting planets, because most orbit faint stars. TESS will discover transiting planets orbiting the brightest stars, enabling, in principle, an atmospheric survey of 10^2 to 10^3 bright hot Jupiters and warm sub-Neptunes. Uniform observations of such a statistically significant sample would provide leverage to understand---and learn from---the diversity of short-period planets. We argue that the best way to maximize the scientific returns of TESS is with a follow-up space mission consisting of a ~1 m telescope with an optical--NIR spectrograph: it could measure molecular absorption for non-terrestrial planets, as well as eclipses and phase variations for the hottest jovians. Such a mission could observe up to 10^3 transits per year, thus enabling it to survey a large fraction of the bright (J<11) TESS planets. JWST could be used to perform detailed atmospheric characterization of the most interesting transiting targets (transit, eclipse, and---when possible---phase-resolved spectroscopy). TESS is also expected to discover a few temperate terrestrial planets transiting nearby M-Dwarfs. Characterizing these worlds will be time-intensive: JWST will need months to provide tantalizing constraints on the presence of an atmosphere, planetary rotational state, clouds, and greenhouse gases. Future flagship missions should be designed to provide better constraints on the habitability of M-Dwarf temperate terrestrial planets.