Given a planar straight-line graph $G=(V,E)$ in $mathbb{R}^2$, a emph{circumscribing polygon} of $G$ is a simple polygon $P$ whose vertex set is $V$, and every edge in $E$ is either an edge or an internal diagonal of $P$. A circumscribing polygon is a emph{polygonization} for $G$ if every edge in $E$ is an edge of $P$. We prove that every arrangement of $n$ disjoint line segments in the plane has a subset of size $Omega(sqrt{n})$ that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to $mathbb{R}^3$. We show that it is NP-complete to decide whether a given graph $G$ admits a circumscribing polygon, even if $G$ is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization.