Do you want to publish a course? Click here

Transfer operators and atomic decomposition

83   0   0.0 ( 0 )
 Added by Daniel Smania
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We use the method of atomic decomposition and a new family of Banach spaces to study the action of transfer operators associated to piecewise-defined maps. It turns out that these transfer operators are quasi-compact even when the associated potential, the dynamics and the underlying phase space have very low regularity. In particular it is often possible to obtain exponential decay of correlations, the Central Limit Theorem and almost sure invariance principle for fairly general observables, including unbounded ones.



rate research

Read More

57 - Daniel Smania 2019
Arbieto and S. recently used atomic decomposition to study transfer operators. We give a long list of old and new expanding dynamical systems for which those results can be applied, obtaining the quasi-compactness of transfer operator acting on Besov spaces of measure spaces with a good grid.
88 - Luchezar Stoyanov 2017
We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Holder constant of the function generating the operator appears only polynomially, not exponentially as in previous known estimates.
79 - Leonid Golinskii 2021
We study the trace class perturbations of the whole-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we refine the Lieb--Thirring inequality due to Hansmann--Katriel. The spectral enclosure for such operators is also discussed.
159 - Guangfu Cao , Ji Li , Minxing Shen 2019
We show that for an entire function $varphi$ belonging to the Fock space ${mathscr F}^2(mathbb{C}^n)$ on the complex Euclidean space $mathbb{C}^n$, the integral operator begin{eqnarray*} S_{varphi}F(z)=int_{mathbb{C}^n} F(w) e^{z cdotbar{w}} varphi(z- bar{w}),dlambda(w), zin mathbb{C}^n, end{eqnarray*} is bounded on ${mathscr F}^2(mathbb{C}^n)$ if and only if there exists a function $min L^{infty}(mathbb{R}^n)$ such that $$ varphi(z)=int_{mathbb{R}^n} m(x)e^{-2left(x-frac{i}{2} z right)cdot left(x-frac{i}{2} z right)} dx, zin mathbb{C}^n. $$ Here $dlambda(w)= pi^{-n}e^{-leftvert wrightvert^2}dw$ is the Gaussian measure on $mathbb C^n$. With this characterization we are able to obtain some fundamental results including the normaility, the algebraic property, spectrum and compactness of this operator $S_varphi$. Moreover, we obtain the reducing subspaces of $S_{varphi}$. In particular, in the case $n=1$, we give a complete solution to an open problem proposed by K. Zhu for the Fock space ${mathscr F}^2(mathbb{C})$ on the complex plane ${mathbb C}$ (Integr. Equ. Oper. Theory {bf 81} (2015), 451--454).
92 - Beno^it F. Sehba 2017
We prove some characterizations of Schatten class Toeplitz operators on Bergman spaces of tube domains over symmetric cones for small exponents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا