No Arabic abstract
The use of spatial information with multiple microphones can improve far-field automatic speech recognition (ASR) accuracy. However, conventional microphone array techniques degrade speech enhancement performance when there is an array geometry mismatch between design and test conditions. Moreover, such speech enhancement techniques do not always yield ASR accuracy improvement due to the difference between speech enhancement and ASR optimization objectives. In this work, we propose to unify an acoustic model framework by optimizing spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input. Our acoustic model subsumes beamformers with multiple types of array geometry. In contrast to deep clustering methods that treat a neural network as a black box tool, the network encoding the spatial filters can process streaming audio data in real time without the accumulation of target signal statistics. We demonstrate the effectiveness of such MC neural networks through ASR experiments on the real-world far-field data. We show that our two-channel acoustic model can on average reduce word error rates (WERs) by~13.4 and~12.7% compared to a single channel ASR system with the log-mel filter bank energy (LFBE) feature under the matched and mismatched microphone placement conditions, respectively. Our result also shows that our two-channel network achieves a relative WER reduction of over~7.0% compared to conventional beamforming with seven microphones overall.
Conventional far-field automatic speech recognition (ASR) systems typically employ microphone array techniques for speech enhancement in order to improve robustness against noise or reverberation. However, such speech enhancement techniques do not always yield ASR accuracy improvement because the optimization criterion for speech enhancement is not directly relevant to the ASR objective. In this work, we develop new acoustic modeling techniques that optimize spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input based on an ASR criterion directly. In contrast to conventional methods, we incorporate array processing knowledge into the acoustic model. Moreover, we initialize the network with beamformers coefficients. We investigate effects of such MC neural networks through ASR experiments on the real-world far-field data where users are interacting with an ASR system in uncontrolled acoustic environments. We show that our MC acoustic model can reduce a word error rate (WER) by~16.5% compared to a single channel ASR system with the traditional log-mel filter bank energy (LFBE) feature on average. Our result also shows that our network with the spatial filtering layer on two-channel input achieves a relative WER reduction of~9.5% compared to conventional beamforming with seven microphones.
Silent speech interfaces (SSI) has been an exciting area of recent interest. In this paper, we present a non-invasive silent speech interface that uses inaudible acoustic signals to capture peoples lip movements when they speak. We exploit the speaker and microphone of the smartphone to emit signals and listen to their reflections, respectively. The extracted phase features of these reflections are fed into the deep learning networks to recognize speech. And we also propose an end-to-end recognition framework, which combines the CNN and attention-based encoder-decoder network. Evaluation results on a limited vocabulary (54 sentences) yield word error rates of 8.4% in speaker-independent and environment-independent settings, and 8.1% for unseen sentence testing.
Although end-to-end automatic speech recognition (E2E ASR) has achieved great performance in tasks that have numerous paired data, it is still challenging to make E2E ASR robust against noisy and low-resource conditions. In this study, we investigated data augmentation methods for E2E ASR in distant-talk scenarios. E2E ASR models are trained on the series of CHiME challenge datasets, which are suitable tasks for studying robustness against noisy and spontaneous speech. We propose to use three augmentation methods and thier combinations: 1) data augmentation using text-to-speech (TTS) data, 2) cycle-consistent generative adversarial network (Cycle-GAN) augmentation trained to map two different audio characteristics, the one of clean speech and of noisy recordings, to match the testing condition, and 3) pseudo-label augmentation provided by the pretrained ASR module for smoothing label distributions. Experimental results using the CHiME-6/CHiME-4 datasets show that each augmentation method individually improves the accuracy on top of the conventional SpecAugment; further improvements are obtained by combining these approaches. We achieved 4.3% word error rate (WER) reduction, which was more significant than that of the SpecAugment, when we combine all three augmentations for the CHiME-6 task.
Code-switching (CS) occurs when a speaker alternates words of two or more languages within a single sentence or across sentences. Automatic speech recognition (ASR) of CS speech has to deal with two or more languages at the same time. In this study, we propose a Transformer-based architecture with two symmetric language-specific encoders to capture the individual language attributes, that improve the acoustic representation of each language. These representations are combined using a language-specific multi-head attention mechanism in the decoder module. Each encoder and its corresponding attention module in the decoder are pre-trained using a large monolingual corpus aiming to alleviate the impact of limited CS training data. We call such a network a multi-encoder-decoder (MED) architecture. Experiments on the SEAME corpus show that the proposed MED architecture achieves 10.2% and 10.8% relative error rate reduction on the CS evaluation sets with Mandarin and English as the matrix language respectively.
End-to-end (E2E) systems have played a more and more important role in automatic speech recognition (ASR) and achieved great performance. However, E2E systems recognize output word sequences directly with the input acoustic feature, which can only be trained on limited acoustic data. The extra text data is widely used to improve the results of traditional artificial neural network-hidden Markov model (ANN-HMM) hybrid systems. The involving of extra text data to standard E2E ASR systems may break the E2E property during decoding. In this paper, a novel modular E2E ASR system is proposed. The modular E2E ASR system consists of two parts: an acoustic-to-phoneme (A2P) model and a phoneme-to-word (P2W) model. The A2P model is trained on acoustic data, while extra data including large scale text data can be used to train the P2W model. This additional data enables the modular E2E ASR system to model not only the acoustic part but also the language part. During the decoding phase, the two models will be integrated and act as a standard acoustic-to-word (A2W) model. In other words, the proposed modular E2E ASR system can be easily trained with extra text data and decoded in the same way as a standard E2E ASR system. Experimental results on the Switchboard corpus show that the modular E2E model achieves better word error rate (WER) than standard A2W models.