No Arabic abstract
In todays increasingly international economy, return and volatility spillover effects across international equity markets are major macroeconomic drivers of stock dynamics. Thus, information regarding foreign markets is one of the most important factors in forecasting domestic stock prices. However, the cross-correlation between domestic and foreign markets is highly complex. Hence, it is extremely difficult to explicitly express this cross-correlation with a dynamical equation. In this study, we develop stock return prediction models that can jointly consider international markets, using multimodal deep learning. Our contributions are three-fold: (1) we visualize the transfer information between South Korea and US stock markets by using scatter plots; (2) we incorporate the information into the stock prediction models with the help of multimodal deep learning; (3) we conclusively demonstrate that the early and intermediate fusion models achieve a significant performance boost in comparison with the late fusion and single modality models. Our study indicates that jointly considering international stock markets can improve the prediction accuracy and deep neural networks are highly effective for such tasks.
As deep reinforcement learning (DRL) has been recognized as an effective approach in quantitative finance, getting hands-on experiences is attractive to beginners. However, to train a practical DRL trading agent that decides where to trade, at what price, and what quantity involves error-prone and arduous development and debugging. In this paper, we introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Along with easily-reproducible tutorials, FinRL library allows users to streamline their own developments and to compare with existing schemes easily. Within FinRL, virtual environments are configured with stock market datasets, trading agents are trained with neural networks, and extensive backtesting is analyzed via trading performance. Moreover, it incorporates important trading constraints such as transaction cost, market liquidity and the investors degree of risk-aversion. FinRL is featured with completeness, hands-on tutorial and reproducibility that favors beginners: (i) at multiple levels of time granularity, FinRL simulates trading environments across various stock markets, including NASDAQ-100, DJIA, S&P 500, HSI, SSE 50, and CSI 300; (ii) organized in a layered architecture with modular structure, FinRL provides fine-tuned state-of-the-art DRL algorithms (DQN, DDPG, PPO, SAC, A2C, TD3, etc.), commonly-used reward functions and standard evaluation baselines to alleviate the debugging workloads and promote the reproducibility, and (iii) being highly extendable, FinRL reserves a complete set of user-import interfaces. Furthermore, we incorporated three application demonstrations, namely single stock trading, multiple stock trading, and portfolio allocation. The FinRL library will be available on Github at link https://github.com/AI4Finance-LLC/FinRL-Library.
In recent years, hyperparameter optimization (HPO) has become an increasingly important issue in the field of machine learning for the development of more accurate forecasting models. In this study, we explore the potential of HPO in modeling stock returns using a deep neural network (DNN). The potential of this approach was evaluated using technical indicators and fundamentals examined based on the effect the regularization of dropouts and batch normalization for all input data. We found that the model using technical indicators and dropout regularization significantly outperforms three other models, showing a positive predictability of 0.53% in-sample and 1.11% out-of-sample, thereby indicating the possibility of beating the historical average. We also demonstrate the stability of the model in terms of the changes in its feature importance over time.
Deep Reinforcement learning is a branch of unsupervised learning in which an agent learns to act based on environment state in order to maximize its total reward. Deep reinforcement learning provides good opportunity to model the complexity of portfolio choice in high-dimensional and data-driven environment by leveraging the powerful representation of deep neural networks. In this paper, we build a portfolio management system using direct deep reinforcement learning to make optimal portfolio choice periodically among S&P500 underlying stocks by learning a good factor representation (as input). The result shows that an effective learning of market conditions and optimal portfolio allocations can significantly outperform the average market.
Deep Learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used for financial time series forecasting tasks, where the non-stationary and multimodal nature of the data pose significant challenges and severely affect the performance of DL models. In this work, a simple, yet effective, neural layer, that is capable of adaptively normalizing the input time series, while taking into account the distribution of the data, is proposed. The proposed layer is trained in an end-to-end fashion using back-propagation and leads to significant performance improvements compared to other evaluated normalization schemes. The proposed method differs from traditional normalization methods since it learns how to perform normalization for a given task instead of using a fixed normalization scheme. At the same time, it can be directly applied to any new time series without requiring re-training. The effectiveness of the proposed method is demonstrated using a large-scale limit order book dataset, as well as a load forecasting dataset.
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the S&P 500, FTSE100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.