Do you want to publish a course? Click here

Band-selective clean- and dirty-limit superconductivity with nodeless gaps in the bilayer iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$

122   0   0.0 ( 0 )
 Added by Bing Xu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The optical properties of the new iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ with $T_c sim 29$~K have been determined. In the normal state a good description of the low-frequency response is obtained with a superposition of two Drude components of which one has a very low scattering rate (narrow Drude-peak) and the other a rather large one (broad Drude-peak). Well below $T_c sim 29$~K, a pronounced gap feature is observed which involves a complete suppression of the optical conductivity below $sim$ 110~cm$^{-1}$ and thus is characteristic of a nodeless superconducting state. The optical response of the broad Drude-component can be described with a dirty-limit Mattis-Bardeen-type response with a single isotropic gap of $2Delta simeq 14$~meV. To the contrary, the response of the narrow Drude-component is in the ultra-clean-limit and its entire spectral weight is transferred to the zero-frequency $delta(omega)$ function that accounts for the loss-free response of the condensate. These observations provide clear evidence for a band-selective coexistence of clean- and dirty-limit superconductivity with nodeless gaps in CsCa$_2$Fe$_4$As$_4$F$_2$.



rate research

Read More

We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31.007(1) {AA}, and $Z$ = 2), which contains double Fe$_2$As$_2$ conducting layers separated by insulating Ca$_2$F$_2$ layers. Our measurements of electrical resistivity, dc magnetic susceptibility and heat capacity demonstrate bulk superconductivity at 33 K in KCa$_2$Fe$_4$As$_4$F$_2$.
We find evidence that the newly discovered Fe-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ ($T_c~=~33.36(7)$~K) displays multigap superconductivity with line nodes. Transverse field muon spin rotation ($mu$SR) measurements show that the temperature dependence of the superfluid density does not have the expected behavior of a fully-gapped superconductor, due to the lack of saturation at low temperatures. Moreover, the data cannot be well fitted using either single band models or a multiband $s$-wave model, yet are well described by two-gap models with line nodes on either one or both of the gaps. Meanwhile the zero-field $mu$SR results indicate a lack of time reversal symmetry breaking in the superconducting state, but suggest the presence of magnetic fluctuations. These results demonstrate a different route for realizing nodal superconductivity in iron-based superconductors. Here the gap structure is drastically altered upon replacing one of the spacer layers, indicating the need to understand how the pairing state is tuned by changes of the asymmetry between the pnictogens located either side of the Fe planes.
117 - Zhi-Cheng Wang , Yi Liu , Si-Qi Wu 2018
CsCa$_2$Fe$_4$As$_4$F$_2$ is a newly discovered iron-based superconductor with $T_mathrm{c}sim$ 30 K containing double Fe$_2$As$_2$ layers that are separated by insulating Ca$_2$F$_2$ spacer layers. Here we report the transport and magnetization measurements on CsCa$_2$Fe$_4$As$_4$F$_2$ single crystals grown for the first time using the self flux of CsAs. We observed a huge resistivity anisotropy $rho_c(T)/rho_{ab}(T)$, which increases with decreasing temperature, from 750 at 300 K to 3150 at 32 K. The $rho_c(T)$ data exhibit a non-metallic behavior above $sim$140 K, suggesting an incoherent electronic state at high temperatures due to the dimension crossover. The superconducting onset transition temperature in $rho_{ab}$ is 0.7 K higher than that in $rho_c$, suggesting two-dimensional (2D) superconducting fluctuations. The lower and upper critical fields also show an exceptional anisotropy among iron-based superconductors. The $H_{c1}^bot(T)$ data are well fitted using the model with two $s$-wave-like superconducting gaps, $Delta_1(0)=6.75$ meV and $Delta_2(0)=2.32$ meV. The inter-plane coherence length $xi_c(0)$ is $3.6$ AA, remarkably smaller than the distance between conducting layers (8.6 AA), consolidating the 2D nature in the title material.
We report resistance and elastoresistance measurements on (Ba$_{0.5}$K$_{0.5}$)Fe$_2$As$_2$, CaKFe$_4$As$_4$, and KCa$_2$Fe$_4$As$_4$F$_2$. The Fe-site symmetry is $D_{2d}$ in the first compound but $C_{2v}$ in the latter two, which lifts the degeneracy of the Fe $d_{xz}$ and $d_{yz}$ orbitals. The temperature dependence of the resistance and elastoresistance is similar between the three compounds. Especially, the [110] elastoresistance is enhanced with decreasing temperature irrespective of the Fe-site symmetry. This appears to be in conflict with recent Raman scattering studies on CaKFe$_4$As$_4$, which suggest the absence of nematic fluctuations. We consider possible ways of reconciliation and suggest that the present result is important in elucidating the origin of in-plane resistivity anisotropy in iron-based superconductors.
We use polarized inelastic neutron scattering to study the spin-excitations anisotropy in the bilayer iron-based superconductor CaKFe$_4$As$_4$ ($T_c$ = 35 K). In the superconducting state, both odd and even $L-$modulations of spin resonance have been observed in our previous unpolarized neutron scattering experiments (T. Xie {it et al.} Phys. Rev. Lett. {bf 120}, 267003 (2018)). Here we find that the high-energy even mode ($sim 18$ meV) is isotropic in spin space, but the low-energy odd modes consist of a $c-$axis polarized mode around 9 meV along with another partially overlapped in-plane mode around 12 meV. We argue that such spin anisotropy is induced by the spin-orbit coupling in the spin-vortex-type fluctuations of this unique compound. The spin anisotropy is strongly affected by the superconductivity, where it is weak below 6 meV in the normal state and then transferred to higher energy and further enhanced in the odd mode of spin resonance below $T_c$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا