Do you want to publish a course? Click here

Direct evaluation of dynamical large-deviation rate functions using a variational ansatz

379   0   0.0 ( 0 )
 Added by Stephen Whitelam
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a simple form of importance sampling designed to bound and compute large-deviation rate functions for time-extensive dynamical observables in continuous-time Markov chains. We start with a model, defined by a set of rates, and a time-extensive dynamical observable. We construct a reference model, a variational ansatz for the behavior of the original model conditioned on atypical values of the observable. Direct simulation of the reference model provides an upper bound on the large-deviation rate function associated with the original model, an estimate of the tightness of the bound, and, if the ansatz is chosen well, the exact rate function. The exact rare behavior of the original model does not need to be known in advance. We use this method to calculate rate functions for currents and counting observables in a set of network- and lattice models taken from the literature. Straightforward ansatze yield bounds that are tighter than bounds obtained from Level 2.5 of large deviations via approximations that involve uniform scalings of rates. We show how to correct these bounds in order to recover the rate functions exactly. Our approach is complementary to more specialized methods, and offers a physically transparent framework for approximating and calculating the likelihood of dynamical large deviations.



rate research

Read More

121 - J. Tailleur , V. Lecomte 2008
In these notes we present a pedagogical account of the population dynamics methods recently introduced to simulate large deviation functions of dynamical observables in and out of equilibrium. After a brief introduction on large deviation functions and their simulations, we review the method of Giardin`a emph{et al.} for discrete time processes and that of Lecomte emph{et al.} for the continuous time counterpart. Last we explain how these methods can be modified to handle static observables and extract information about intermediate times.
We use a neural network ansatz originally designed for the variational optimization of quantum systems to study dynamical large deviations in classical ones. We obtain the scaled cumulant-generating function for the dynamical activity of the Fredrickson-Andersen model, a prototypical kinetically constrained model, in one and two dimensions, and present the first size-scaling analysis of the dynamical activity in two dimensions. These results provide a new route to the study of dynamical large-deviation functions, and highlight the broad applicability of the neural-network state ansatz across domains in physics.
Singularities of dynamical large-deviation functions are often interpreted as the signal of a dynamical phase transition and the coexistence of distinct dynamical phases, by analogy with the correspondence between singularities of free energies and equilibrium phase behavior. Here we study models of driven random walkers on a lattice. These models display large-deviation singularities in the limit of large lattice size, but the extent to which each models phenomenology resembles a phase transition depends on the details of the driving. We also compare the behavior of ergodic and non-ergodic models that present large-deviation singularities. We argue that dynamical large-deviation singularities indicate the divergence of a model timescale, but not necessarily one associated with cooperative behavior or the existence of distinct phases.
Active matter represents a broad class of systems that evolve far from equilibrium due to the local injection of energy. Like their passive analogues, transformations between distinct metastable states in active matter proceed through rare fluctuations, however their detailed balance violating dynamics renders these events difficult to study. Here, we present a simulation method for evaluating the rate and mechanism of rare events in generic nonequilibrium systems and apply it to study the conformational changes of a passive solute in an active fluid. The method employs a variational optimization of a control force that renders the rare event a typical one, supplying an exact estimate of its rate as a ratio of path partition functions. Using this method we find that increasing activity in the active bath can enhance the rate of conformational switching of the passive solute in a manner consistent with recent bounds from stochastic thermodynamics.
For quantum integrable systems the currents averaged with respect to a generalized Gibbs ensemble are revisited. An exact formula is known, which we call collision rate ansatz. While there is considerable work to confirm this ansatz in various models, our approach uses the symmetry of the current-charge susceptibility matrix, which holds in great generality. Besides some technical assumptions, the main input is the availability of a self-conserved current, i.e. some current which is itself conserved. The collision rate ansatz is then derived. The argument is carried out in detail for the Lieb-Liniger model and the Heisenberg XXZ chain. The Fermi-Hubbard model is not covered, since no self-conserved current seems to exist. It is also explained how from the existence of a boost operator a self-conserved current can be deduced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا