Single photoionization of the Kr-like Rb II ion in the photon energy range 22 - 46.0 eV


Abstract in English

Single photoionization cross sections for Kr-like Rb$^+$ ions are reported in the energy (wavelength) range 22 eV (564 AA) to 46 eV (270 AA). Theoretical cross section calculations for this {it trans}-Fe element are compared with measurements from the ASTRID radiation facility in Aarhus, Denmark and the dual laser plasma (DLP) technique, at respectively 40 meV and 35 meV FWHM energy resolution. In the photon energy region 22 - 32 eV the spectrum is dominated by excitation autoionizing resonance states. Above 32 eV the cross section exhibit classic Fano window resonances features, which are analysed and discussed. Large-scale theoretical photoionization cross-section calculations, performed using a Dirac Coulomb $R$-matrix approximation are bench marked against these high resolution experimental results. Comparison of the theoretical work with the experimental studies allowed the identification of resonance features and their parameters in the spectra in addition to contributions from excited metastable states of the Rb$^+$ ions.

Download