No Arabic abstract
The aim of our study was to develop a method by which a social robot can greet passersby and get their attention without causing them to suffer discomfort.A number of customer services have recently come to be provided by social robots rather than people, including, serving as receptionists, guides, and exhibitors. Robot exhibitors, for example, can explain products being promoted by the robot owners. However, a sudden greeting by a robot can startle passersby and cause discomfort to passersby.Social robots should thus adapt their mannerisms to the situation they face regarding passersby.We developed a method for meeting this requirement on the basis of the results of related work. Our proposed method, user-centered reinforcement learning, enables robots to greet passersby and get their attention without causing them to suffer discomfort (p<0.01) .The results of an experiment in the field, an office entrance, demonstrated that our method meets this requirement.
Can artificial agents learn to assist others in achieving their goals without knowing what those goals are? Generic reinforcement learning agents could be trained to behave altruistically towards others by rewarding them for altruistic behaviour, i.e., rewarding them for benefiting other agents in a given situation. Such an approach assumes that other agents goals are known so that the altruistic agent can cooperate in achieving those goals. However, explicit knowledge of other agents goals is often difficult to acquire. Even assuming such knowledge to be given, training of altruistic agents would require manually-tuned external rewards for each new environment. Thus, it is beneficial to develop agents that do not depend on external supervision and can learn altruistic behaviour in a task-agnostic manner. Assuming that other agents rationally pursue their goals, we hypothesize that giving them more choices will allow them to pursue those goals better. Some concrete examples include opening a door for others or safeguarding them to pursue their objectives without interference. We formalize this concept and propose an altruistic agent that learns to increase the choices another agent has by maximizing the number of states that the other agent can reach in its future. We evaluate our approach on three different multi-agent environments where another agents success depends on the altruistic agents behaviour. Finally, we show that our unsupervised agents can perform comparably to agents explicitly trained to work cooperatively. In some cases, our agents can even outperform the supervised ones.
Central to the design of many robot systems and their controllers is solving a constrained blackbox optimization problem. This paper presents CNMA, a new method of solving this problem that is conservative in the number of potentially expensive blackbox function evaluations; allows specifying complex, even recursive constraints directly rather than as hard-to-design penalty or barrier functions; and is resilient to the non-termination of function evaluations. CNMA leverages the ability of neural networks to approximate any continuous function, their transformation into equivalent mixed integer linear programs (MILPs) and their optimization subject to constraints with industrial strength MILP solvers. A new learning-from-failure step guides the learning to be relevant to solving the constrained optimization problem. Thus, the amount of learning is orders of magnitude smaller than that needed to learn functions over their entire domains. CNMA is illustrated with the design of several robotic systems: wave-energy propelled boat, lunar lander, hexapod, cartpole, acrobot and parallel parking. These range from 6 real-valued dimensions to 36. We show that CNMA surpasses the Nelder-Mead, Gaussian and Random Search optimization methods against the metric of number of function evaluations.
AI systems are increasingly applied to complex tasks that involve interaction with humans. During training, such systems are potentially dangerous, as they havent yet learned to avoid actions that could cause serious harm. How can an AI system explore and learn without making a single mistake that harms humans or otherwise causes serious damage? For model-free reinforcement learning, having a human in the loop and ready to intervene is currently the only way to prevent all catastrophes. We formalize human intervention for RL and show how to reduce the human labor required by training a supervised learner to imitate the humans intervention decisions. We evaluate this scheme on Atari games, with a Deep RL agent being overseen by a human for four hours. When the class of catastrophes is simple, we are able to prevent all catastrophes without affecting the agents learning (whereas an RL baseline fails due to catastrophic forgetting). However, this scheme is less successful when catastrophes are more complex: it reduces but does not eliminate catastrophes and the supervised learner fails on adversarial examples found by the agent. Extrapolating to more challenging environments, we show that our implementation would not scale (due to the infeasible amount of human labor required). We outline extensions of the scheme that are necessary if we are to train model-free agents without a single catastrophe.
This paper studies the constrained/safe reinforcement learning (RL) problem with sparse indicator signals for constraint violations. We propose a model-based approach to enable RL agents to effectively explore the environment with unknown system dynamics and environment constraints given a significantly small number of violation budgets. We employ the neural network ensemble model to estimate the prediction uncertainty and use model predictive control as the basic control framework. We propose the robust cross-entropy method to optimize the control sequence considering the model uncertainty and constraints. We evaluate our methods in the Safety Gym environment. The results show that our approach learns to complete the tasks with a much smaller number of constraint violations than state-of-the-art baselines. Additionally, we are able to achieve several orders of magnitude better sample efficiency when compared with constrained model-free RL approaches. The code is available at url{https://github.com/liuzuxin/safe-mbrl}.
The combination of deep neural network models and reinforcement learning algorithms can make it possible to learn policies for robotic behaviors that directly read in raw sensory inputs, such as camera images, effectively subsuming both estimation and control into one model. However, real-world applications of reinforcement learning must specify the goal of the task by means of a manually programmed reward function, which in practice requires either designing the very same perception pipeline that end-to-end reinforcement learning promises to avoid, or else instrumenting the environment with additional sensors to determine if the task has been performed successfully. In this paper, we propose an approach for removing the need for manual engineering of reward specifications by enabling a robot to learn from a modest number of examples of successful outcomes, followed by actively solicited queries, where the robot shows the user a state and asks for a label to determine whether that state represents successful completion of the task. While requesting labels for every single state would amount to asking the user to manually provide the reward signal, our method requires labels for only a tiny fraction of the states seen during training, making it an efficient and practical approach for learning skills without manually engineered rewards. We evaluate our method on real-world robotic manipulation tasks where the observations consist of images viewed by the robots camera. In our experiments, our method effectively learns to arrange objects, place books, and drape cloth, directly from images and without any manually specified reward functions, and with only 1-4 hours of interaction with the real world.