Do you want to publish a course? Click here

Covert Networks: How Hard is It to Hide?

102   0   0.0 ( 0 )
 Added by Palash Dey
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Covert networks are social networks that often consist of harmful users. Social Network Analysis (SNA) has played an important role in reducing criminal activities (e.g., counter terrorism) via detecting the influential users in such networks. There are various popular measures to quantify how influential or central any vertex is in a network. As expected, strategic and influential miscreants in covert networks would try to hide herself and her partners (called {em leaders}) from being detected via these measures by introducing new edges. Waniek et al. show that the corresponding computational problem, called Hiding Leader, is NP-Complete for the degree and closeness centrality measures. We study the popular core centrality measure and show that the problem is NP-Complete even when the core centrality of every leader is only $3$. On the contrary, we prove that the problem becomes polynomial time solvable for the degree centrality measure if the degree of every leader is bounded above by any constant. We then focus on the optimization version of the problem and show that the Hiding Leader problem admits a $2$ factor approximation algorithm for the degree centrality measure. We complement it by proving that one cannot hope to have any $(2-varepsilon)$ factor approximation algorithm for any constant $varepsilon>0$ unless there is a $varepsilon/2$ factor polynomial time algorithm for the Densest $k$-Subgraph problem which would be considered a significant breakthrough.



rate research

Read More

There is a longstanding discrepancy between the observed Galactic classical nova rate of $sim 10$ yr$^{-1}$ and the predicted rate from Galactic models of $sim 30$--50 yr$^{-1}$. One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half ($sim 48$%) of novae are expected to be easily detectable ($g lesssim 15$) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from ASAS-SN, OGLE-IV, and the Palomar Gattini IR-survey in the context of our modeling, we find a tentative Galactic nova rate of $sim 40$ yr$^{-1}$, though this could decrease to as low as $sim 30$ yr$^{-1}$ depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.
This paper studies conspiracy and debunking narratives about COVID-19 origination on a major Chinese social media platform, Weibo, from January to April 2020. Popular conspiracies about COVID-19 on Weibo, including that the virus is human-synthesized or a bioweapon, differ substantially from those in the US. They attribute more responsibility to the US than to China, especially following Sino-US confrontations. Compared to conspiracy posts, debunking posts are associated with lower user participation but higher mobilization. Debunking narratives can be more engaging when they come from women and influencers and cite scientists. Our findings suggest that conspiracy narratives can carry highly cultural and political orientations. Correction efforts should consider political motives and identify important stakeholders to reconstruct international dialogues toward intercultural understanding.
We present a procedure to share a secret spatial direction in the absence of a common reference frame using a multipartite quantum state. The procedure guarantees that the parties can determine the direction if they perform joint measurements on the state, but fail to do so if they restrict themselves to local operations and classical communication (LOCC). We calculate the fidelity for joint measurements, give bounds on the fidelity achievable by LOCC, and prove that there is a non-vanishing gap between the two of them, even in the limit of infinitely many copies. The robustness of the procedure under particle loss is also studied. As a by-product we find bounds on the probability of discriminating by LOCC between the invariant subspaces of total angular momentum N/2 and N/2-1 in a system of N elementary spins.
266 - P. Chudzinski 2018
The problem of photoemission from a quasi-1D material is studied. We identify two issues that play a key role in the detection of gapless Tomonaga-Luttinger liquid (TLL) phase. Firstly, we show how a disorder -- backward scattering as well as forward scattering component, is able to significantly obscure the TLL states, hence the initial state of ARPES. Secondly, we investigate the photo-electron propagation towards a samples surface. We focus on the scattering path operator contribution to the final state of ARPES. We show that, in the particular conditions set by the 1D states, one can derive exact analytic solution for this intermediate stage of ARPES. The solution shows that for particular energies of incoming photons the intensity of photo-current may be substantially reduced. Finally, we put together the two aspects (the disorder and the scattering path operator) to show the full, disruptive force of any inhomogeneities on the ARPES amplitude.
We discuss the constraints coming from current observations of type Ia supernovae on cosmological models which allow sudden future singularities of pressure (with the scale factor and the energy density regular). We show that such a sudden singularity may happen in the very near future (e.g. within ten million years) and its prediction at the present moment of cosmic evolution cannot be distinguished, with current observational data, from the prediction given by the standard quintessence scenario of future evolution. Fortunately, sudden future singularities are characterized by a momentary peak of infinite tidal forces only; there is no geodesic incompletness which means that the evolution of the universe may eventually be continued throughout until another ``more serious singularity such as Big-Crunch or Big-Rip.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا