Do you want to publish a course? Click here

Decoding quantum errors with subspace expansions

158   0   0.0 ( 0 )
 Added by Jarrod McClean
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the rapid developments in quantum hardware comes a push towards the first practical applications on these devices. While fully fault-tolerant quantum computers may still be years away, one may ask if there exist intermediate forms of error correction or mitigation that might enable practical applications before then. In this work, we consider the idea of post-processing error decoders using existing quantum codes, which are capable of mitigating errors on encoded logical qubits using classical post-processing with no complicated syndrome measurements or additional qubits beyond those used for the logical qubits. This greatly simplifies the experimental exploration of quantum codes on near-term devices, removing the need for locality of syndromes or fast feed-forward, allowing one to study performance aspects of codes on real devices. We provide a general construction equipped with a simple stochastic sampling scheme that does not depend explicitly on a number of terms that we extend to approximate projectors within a subspace. This theory then allows one to generalize to the correction of some logical errors in the code space, correction of some physical unencoded Hamiltonians without engineered symmetries, and corrections derived from approximate symmetries. In this work, we develop the theory of the method and demonstrate it on a simple example with the perfect $[[5,1,3]]$ code, which exhibits a pseudo-threshold of $p approx 0.50$ under a single qubit depolarizing channel applied to all qubits. We also provide a demonstration under the application of a logical operation and performance on an unencoded hydrogen molecule, which exhibits a significant improvement over the entire range of possible errors incurred under a depolarizing channel.



rate research

Read More

Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hydrogen and lithium dimers, comparable to simulations requiring twenty or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.
Rudolph (1967) introduced one-step majority logic decoding for linear codes derived from combinatorial designs. The decoder is easily realizable in hardware and requires that the dual code has to contain the blocks of so called geometric designs as codewords. Peterson and Weldon (1972) extended Rudolphs algorithm to a two-step majority logic decoder correcting the same number of errors than Reeds celebrated multi-step majority logic decoder. Here, we study the codes from subspace designs. It turns out that these codes have the same majority logic decoding capability as the codes from geometric designs, but their majority logic decoding complexity is sometimes drastically improved.
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error correcting codes, thus allowing us to ``quantize all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.
We propose a scheme to implement quantum computation in decoherence-free subspace with superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-qubit gates in encoded qubit can be achieved with cavity assisted interaction. A measurement-based two-qubit Controlled-Not gate is produced with parity measurements assisted by an auxiliary superconducting device and followed by prescribed single-qubit gates. The measurement of currents on two parallel devices can realize a projective measurement, which is equivalent to the parity measurement on the involved devices.
102 - Pierre Six , Pierre Rouchon 2016
Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace integrals. When this maximum is on the boundary of the integration domain, as it is the case when the MaxLike quantum state is not full rank, such expansions are not standard. We provide here such expansions, even when this maximum does not belong to the smooth part of the boundary, as it is the case when the rank deficiency exceeds two. These expansions provide, aside the MaxLike estimate of the quantum state, confidence intervals for any observable. They confirm the formula proposed and used without precise mathematical justifications by the authors in an article recently published in Physical Review A.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا