The deep nitrogen-covered Sputnik Planitia (SP; informal name) basin on Pluto is located very close to the longitude of Plutos tidal axis[1] and may be an impact feature [2], by analogy with other large basins in the solar system[3,4]. Reorientation[5-7] due to tidal and rotational torques can explain SPs location, but requires it to be a positive gravity anomaly[7], despite its negative topography. Here we argue that if SP formed via impact and if Pluto possesses a subsurface ocean, a positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest N2 deposition. Without a subsurface ocean a positive gravity anomaly requires an implausibly thick N2 layer (greater than 40 km). A rigid, conductive ice shell is required to prolong such an oceans lifetime to the present day[8] and maintain ocean uplift. Because N2 deposition is latitude-dependent[9], nitrogen loading and reorientation may have exhibited complex feedbacks[7].