No Arabic abstract
It is well established that the nucleon form factors can be related to Generalized Parton Distributions (GPDs) through sum-rules. On the other hand, GPDs can be expressed in terms of Parton Distribution Functions (PDFs) according to Diehls model. In this work, we use this model to calculate polarized GPDs for quarks ($widetilde{H}_q$) using the available polarized PDFs obtained from the experimental data, and then study the axial form factor of nucleon. We determine parameters of the model using standard $chi^2$ analysis of experimental data. It is shown that some parameters should be readjusted, as compared to some previously reported values, to obtain better consistency between the theoretical predictions and experimental data. Moreover, we study in details the uncertainty of nucleon axial form factor due to various sources.
Results from a recent analysis of the zero-skewness generalized parton distributions (GPDs) for valence quarks are reviewed. The analysis bases on a physically motivated parameterization of the GPDs with a few free parameters adjusted to the nucleon form factor data. The Fourier transforms of the GPDs representing quark densities in the impact parameter plane, as well as moments of the GPDs are also discussed. The 1/x moments in particular form the soft physics input to Compton scattering off protons within the handbag approach. The Compton cross section evaluated from this information is found to be in good agreement with experiment.
With a special intention of clarifying the underlying spin contents of the nucleon, we investigate the generalized form factors of the nucleon, which are defined as the $n$-th $x$-moments of the generalized parton distribution functions, within the framework of the chiral quark soliton model. A particular emphasis is put on the pion mass dependence of final predictions, which we shall compare with the predictions of lattice QCD simulations carried out in the so-called heavy pion region around $m_pi simeq (700 sim 900) {MeV}$. We find that some observables are very sensitive to the variation of the pion mass. It will be argued that the negligible importance of the quark orbital angular momentum indicated by the LHPC and QCDSF lattice collaborations might be true in the unrealistic heavy pion world, but it is not necessarily the case in our real world close to the chiral limit.
In this work, we present a new set of unpolarized ($ H $) and polarized ($widetilde{H}$) generalized parton distributions (GPDs) that have been determined using a simultaneous $ chi^2 $ analysis of the nucleon axial form factor (AFF) and wide-angle Compton scattering (WACS) experimental data at the next-to-leading order (NLO) accuracy in QCD. We explore various Ansatzes presented in the literature for GPDs, which use forward parton distributions as input, and choose the ones most suited to our analysis. The experimental data included in our analysis cover a wide range of the squared transverse momentum, which is $ 0.025 < -t < 6.46 $ GeV$ ^2 $. We show that the WACS data affect significantly the large $-t$ behavior of $widetilde{H}$. The polarized GPDs obtained from the simultaneous analysis of AFF and WACS data differ considerably from the corresponding ones obtained by analyzing AFF and WACS separately, and have less uncertainties. We show that the theoretical predictions obtained using our GPDs are in good agreement with the analyzed AFF and WACS data for the entire range of $ -t $ studied. Finally, we obtain the impact parameter dependent parton distributions, both in an unpolarized and in a transversely polarized proton, and present them as tomography plots.
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.
The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon.