No Arabic abstract
X-ray reverberation mapping has emerged as a powerful probe of microparsec scales around AGN, and with high sensitivity detectors, its full potential in echo-mapping the otherwise inaccessible disk-corona at the black hole horizon scale will be revealed.
Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically shaped by the energy injection from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics of this feedback process affects galaxy formation and evolution. In particular, a major challenge is unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude in distance throughout galaxies and their immediate environments. The best place to study the impact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe, and where we can directly image the impact of black holes on their surroundings. We identify critical questions and potential measurements that will likely transform our understanding of the physics of SMBH feedback and how it shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using the next generation of high spectral and spatial resolution X-ray and microwave telescopes.
The formation, accretion and growth of supermassive black holes in the early universe are investigated. The accretion rate ${dot M}$ is calculated using the Bondi accretion rate onto black holes. Starting with initial seed black holes with masses $M_{rm BH}sim 10^2-10^3M_{odot}$, the Bondi accretion rate can evolve into a supermassive black hole with masses $M_{rm BH}sim 10^9-10^{10}M_{odot}$ and with a young quasar lifetime $sim 10^5-10^6$ years by super-Eddington accretion.
Using different kinds of velocity tracers derived from the broad H$beta$ profile (in the mean or rms spectrum) and the corresponding virial factors $f$, the central supermassive black hole (SMBH) masses ($M_{rm BH}$) are calculated for a compiled sample of 120 reverberation-mapped (RM) AGNs. For its subsample of RM AGNs with measured stellar velocity dispersion ($sigma_{rm ast}$), the multivariate linear regression technique is used to calibrate the mean value $f$, as well as the variable FWHM-based $f$. It is found that, whether excluding the pseudo-bulges or not, $M_{rm BH}$ from the H$beta$ line dispersion in the mean spectrum ($sigma_{rm Hbeta,mean}$) has the smallest offset rms with respect to the $M_{rm BH}-sigma_{ast}$ relation. For the total sample excluding SDSS-RM AGNs, with respect to $M_{rm BH}$ from $sigma_{rm ast}$ or that from the H$beta$ line dispersion in the rms spectrum ($sigma_{rm Hbeta,rms}$), it is found that we can obtain $M_{rm BH}$ from the $sigma_{rm Hbeta,mean}$ with the smallest offset rms of 0.38 dex or 0.23 dex, respectively. It implies that, with respect to the H$beta$ FWHM, we prefer $sigma_{rm Hbeta,mean}$ to calculate $M_{rm BH}$ from the single-epoch spectrum. Using the FWHM-based $f$, we can improve $M_{rm BH}$ calculation from FWHM(H$beta$) and the mean $f$, with a decreased offset rms from 0.52 dex to 0.39 dex with respect to $M_{rm BH}$ from $sigma_{rm ast}$ for the subsample of 36 AGNs with $sigma_{rm ast}$. The value of 0.39 dex is almost the same as that from $sigma_{rm Hbeta,mean}$ and the mean $f$.
The Suzaku AGN Spin Survey is designed to determine the supermassive black hole spin in six nearby active galactic nuclei (AGN) via deep Suzaku stares, thereby giving us our first glimpse of the local black hole spin distribution. Here, we present an analysis of the first target to be studied under the auspices of this Key Project, the Seyfert galaxy NGC 3783. Despite complexity in the spectrum arising from a multi-component warm absorber, we detect and study relativistic reflection from the inner accretion disk. Assuming that the X-ray reflection is from the surface of a flat disk around a Kerr black hole, and that no X-ray reflection occurs within the general relativistic radius of marginal stability, we determine a lower limit on the black hole spin of a > 0.88 (99% confidence). We examine the robustness of this result to the assumption of the analysis, and present a brief discussion of spin-related selection biases that might affect flux-limited samples of AGN.
We study a model in which supermassive black holes (SMBHs) can grow by the combined action of gas accretion on heavy seeds and mergers of both heavy (m_s^h=10^5 Msol) and light (m_s^l = 10^2 Msol) seeds. The former result from the direct collapse of gas in T_s^h >1.5x10^4K, H_2-free halos; the latter are the endproduct of a standard H_2-based star formation process. The H_2-free condition is attained by exposing halos to a strong (J_21 > 10^3) Lyman-Werner UV background produced by both accreting BHs and stars, thus establishing a self-regulated growth regime. We find that this condition is met already at z close to 18 in the highly biased regions in which quasars are born. The key parameter allowing the formation of SMBHs by z=6-7 is the fraction of halos that can form heavy seeds: the minimum requirement is that f_heavy>0.001; SMBH as large as 2x10^10 Msol can be obtained when f_heavy approaches unity. Independently of f_heavy, the model produces a high-z stellar bulge-black hole mass relation which is steeper than the local one, implying that SMBHs formed before their bulge was in place. The formation of heavy seeds, allowed by the Lyman-Werner radiative feedback in the quasar-forming environment, is crucial to achieve a fast growth of the SMBH by merger events in the early phases of its evolution, i.e. z>7. The UV photon production is largely dominated by stars in galaxies, i.e. black hole accretion radiation is sub-dominant. Interestingly, we find that the final mass of light BHs and of the SMBH in the quasar is roughly equal by z=6; by the same time only 19% of the initial baryon content has been converted into stars. The SMBH growth is dominated at all epochs z > 7.2 by mergers (exceeding accretion by a factor 2-50); at later times accretion becomes by far the most important growth channel. We finally discuss possible shortcomings of the model.