Do you want to publish a course? Click here

High-magnetic field phase diagram and failure of magnetic Gruneisen scaling in LiFePO$_4$

120   0   0.0 ( 0 )
 Added by Ruediger Klingeler
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the magnetic phase diagram of single-crystalline LiFePO$_4$ in magnetic fields up to 58~T and present a detailed study of magneto-elastic coupling by means of high-resolution capacitance dilatometry. Large anomalies at tn in the thermal expansion coefficient $alpha$ imply pronounced magneto-elastic coupling. Quantitative analysis yields the magnetic Gruneisen parameter $gamma_{rm mag}=6.7(5)cdot 10^{-7}$~mol/J. The positive hydrostatic pressure dependence $dT_{rm N}/dp = 1.46(11)$~K/GPa is dominated by uniaxial effects along the $a$-axis. Failure of Gruneisen scaling below $approx 40$~K, i.e., below the peak temperature in the magneto-electric coupling coefficient [onlinecite{toft2015anomalous}], implies several competing degrees of freedom and indicates relevance of recently observed hybrid excitations~[onlinecite{yiu2017hybrid}]. A broad and strongly magnetic-field-dependent anomaly in $alpha$ in this temperature regime highlight the relevance of structure changes. Upon application of magnetic fields $B||b$-axis, a pronounced jump in the magnetisation implies spin-reorientation at $B_{rm SF} = 32$~T as well as a precursing phase at 29~T and $T=1.5$~K. In a two-sublattice mean-field model, the saturation field $B_{rm sat,b} = 64(2)$~T enables the determination of the effective antiferromagnetic exchange interaction $J_{rm af} = 2.68(5)$~meV as well as the anisotropies $D_{rm b} = -0.53(4)$~meV and $D_{rm c} = 0.44(8)$~meV.

rate research

Read More

107 - M. Hoffmann , K. Dey , J. Werner 2021
High-quality single crystals of CoTiO$_3$ are grown and used to elucidate in detail structural and magnetostructural effects by means of high-resolution capacitance dilatometry studies in fields up to 15 T which are complemented by specific heat and magnetization measurements. In addition, we refine the single-crystal structure of the ilmenite ($Rbar{3}$) phase. At the antiferromagnetic ordering temperature $T_mathrm{N}$, pronounced $lambda$-shaped anomaly in the thermal expansion coefficients signals shrinking of both the $c$ and $b$ axes, indicating strong magnetoelastic coupling with uniaxial pressure along $c$ yielding six times larger effect on $T_mathrm{N}$ than the pressure applied in-plane. The hydrostatic pressure dependency derived by means of Gruneisen analysis amounts to $partial T_mathrm{N}/ partial papprox 2.7(4)$~K/GPa. The high-field magnetization studies in static and pulsed magnetic fields up to 60~T along with high-field thermal expansion measurements facilitate in constructing the complete anisotropic magnetic phase diagram of CoTiO$_3$. While the results confirm the presence of significant magnetodielectric coupling, our data show that magnetism drives the observed structural, dielectric, and magnetic changes both in the short-range ordered regime well-above $T_mathrm{N}$ as well as in the long-range magnetically ordered phase.
We report high-resolution capacitance dilatometry studies on the uniaxial length changes in a NdB$_4$ single crystal. The evolution of magnetically ordered phases below $T_{rm N}$= 17.2~K (commensurate antiferromagnetic phase, cAFM), $T_{rm IT}$= 6.8~K (intermediate incommensurate phase, IT), and $T_{rm LT}$= 4.8~K (low-temperature phase, LT) is associated with pronounced anomalies in the thermal expansion coefficients. The data imply significant magneto-elastic coupling and evidence of a structural phase transition at $T_{rm LT}$ . While both cAFM and LT favor structural anisotropy $delta$ between in-plane and out-of-plane length changes, it competes with the IT-type of order, i.e., $delta$ is suppressed in that phase. Notably, finite anisotropy well above $T_{rm N}$ indicates short-range correlations which are, however, of neither cAFM, IT, nor LT-type. Gruneisen analysis of the ratio of thermal expansion coefficient and specific heat enables the derivation of uniaxial as well as hydrostatic pressure dependencies. While $alpha$/$c_{rm p}$ evidences a single dominant energy scale in LT, our data imply precursory fluctuations of a competing phase in IT and cAFM, respectively. Our results suggest the presence of orbital degrees of freedom competing with cAFM and successive evolution of a magnetically and orbitally ordered ground state.
The properties of LiHoF$_4$ are believed to be well described by a long-range dipolar Ising model. We go beyond mean-field theory and calculate the phase diagram of the Ising model in a transverse field using a quantum Monte Carlo method. The relevant Ising degrees of freedom are obtained using a non-perturbative projection onto the low-lying crystal field eigenstates. We explicitly take the domain structure into account, and the strength of the near-neighbor exchange interaction is obtained as a fitting parameter. The on-site hyperfine interaction is approximately taken into account through a renormalization of the transverse applied magnetic field. Finally, we propose a spectroscopy experiment to precisely measure the most important parameter controlling the location of the phase boundary.
Recently, Yb-based triangular lattice antiferromagnets have garnered significant interest as possible quantum spin liquid candidates. One example is YbMgGaO4, which showed many promising spin liquid features, but also possesses a high degree of disorder owing to site-mixing between the non-magnetic cations. To further elucidate the role of chemical disorder and to explore the phase diagram of these materials in applied field, we present neutron scattering and sensitive magnetometry measurements of the closely related compound, YbZnGaO4. Our results suggest a difference in magnetic anisotropy between the two compounds, and we use key observations of the magnetic phase crossover to motivate an exploration of the field- and exchange parameter-dependent phase diagram, providing an expanded view of the available magnetic states in applied field. This enriched map of the phase space serves as a basis to restrict the values of parameters describing the magnetic Hamiltonian with broad application to recently discovered related materials.
We present measurements of the magnetoresistivity RHOxx of URu2Si2 single crystals in high magnetic fields up to 60 T and at temperatures from 1.4 K to 40 K. Different orientations of the magnetic field have been investigated permitting to follow the dependence on Q of all magnetic phase transitions and crossovers, where Q is the angle between the magnetic field and the easy-axis c. We find out that all magnetic transitions and crossovers follow a simple 1/cos(Q) -law, indicating that they are controlled by the projection of the field on the c-axis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا