No Arabic abstract
The magnetic and dielectric properties of the multiferroic triangular lattice magnet compound alpha-NaFeO2 were studied by magnetization, specific heat, dielectric permittivity, and pyroelectric current measurements and by neutron diffraction experiments using single crystals grown by a hydrothermal synthesis method. This work produced magnetic field (in the monoclinic ab-plane, B_ab, and along the c*-axis, B_c) versus temperature magnetic phase diagrams, including five and six magnetically ordered phases in B_ab and along B_c, respectively. Comparing the polarization direction to the magnetic structures in the different ferroelectric phases, we conclude that the extended inverse Dzyaloshinskii-Moriya mechanism expressed by the orthogonal components p1 ~ rij x (Si x Sj ) and p2 ~ Si x Sj can explain the polarization directions. Based on calculations incorporating exchange interactions up to fourth-nearest-neighbor (NN) couplings, we infer that competition among antiferromagnetic second NN interactions in the triangular lattice plane, as well as weak interplane antiferromagnetic interactions, are responsible for the rich phase diagrams of alpha-NaFeO2.
Electric and magnetic properties of multiferroic GdMn2O5 in external magnetic fields were investigated to map out the magnetoelectric phases in this material. Due to strong magnetoelectric coupling, the dielectric permittivity is highly sensitive to phase boundaries in GdMn2O5, which allowed to construct the field-temperature phase diagrams. Several phase transitions are observed which are strongly field-dependent with respect to field orientation and strength. The phase diagram for a magnetic field along the crystallographic a-axis corresponds well to a polarization step, as induced by 90 degree rotation of Gd magnetic moments. Our results support the model of two ferroelectric sublattices, Mn-Mn and Gd-Mn with strong R-Mn (4f-3d) interaction for the polarization in RMn2O5.
Magnetic phase transitions in multiferroic bismuth ferrite (BiFeO3) induced by magnetic field, epitaxial strain, and composition modification are considered. These transitions from a spatially modulated spin spiral state to a homogenous antiferromagnetic one are accompanied by the release of latent magnetization and a linear magnetoelectric effect that makes BiFeO3-based materials efficient room-temperature single phase multiferroics.
A theoretical description of the sequence of magnetic phases in Co3TeO6 is presented. The strongly first-order character of the transition to the commensurate multiferroic ground state, induced by coupled order parameters corresponding to different wavevectors, is related to a large magnetoelastic effect with an exchange energy critically sensitive to the interatomic spacing. The monoclinic magnetic symmetry C2 of the multiferroic phase permits spontaneous polarization and magnetization as well as the linear magnetoelectric effect. The existence of weakly ferromagnetic domains is verified experimentally by second harmonic generation measurements.
The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fields than previously assumed. Magnetic irreversibility indicating the presence of a spontaneous magnetic moment is found near 50 K for R=Er, Yb, and Tm. At very low temperatures and low magnetic fields the phase boundary defined by the ordering of the rare earth moments is resolved. The sizable dielectric anomalies observed along all phase boundaries are evidence for strong spin-lattice coupling in the hexagonal RMnO3. In HoMnO3 the strong magnetoelastic distortions are investigated in more detail via magnetostriction experiments up to 14 Tesla. The results are discussed based on existing data on magnetic symmetries and the interactions between the Mn-spins, the rare earth moments, and the lattice.
We have discovered strong magnetoelectric (ME) effects in the single chiral-helical magnetic state of single-crystalline langasite Ba3NbFe3Si2O14 that is crystallographically chiral. The ferroelectric polarization, predominantly aligned along the a axis below the Neel temperature of ~27 K, changes in a highly non-linear fashion in the presence of in-plane magnetic fields (H) perpendicular to the a axis (H//b*). This ME effect as well as smaller ME effects in other directions exhibit no poling dependence, suggesting the presence of a self-formed single ME domain. In addition, these ME effects accompany no-measurable hysteresis, which is crucial for many technological applications.