Do you want to publish a course? Click here

Cosmological Probes of Dark Matter Interactions: The Next Decade

72   0   0.0 ( 0 )
 Added by Vera Gluscevic
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological observations offer unique and robust avenues for probing the fundamental nature of dark matter particles-they broadly test a range of compelling theoretical scenarios, often surpassing or complementing the reach of terrestrial and other experiments. We discuss observational and theoretical advancements that will play a pivotal role in realizing a strong program of cosmological searches for the identity of dark matter in the coming decade. Specifically, we focus on measurements of the cosmic-microwave-background anisotropy and spectral distortions, and tracers of structure (such as the Lyman-$alpha$ forest, galaxies, and the cosmological 21-cm signal).



rate research

Read More

The Cold Dark Matter theory of gravitationally-driven hierarchical structure formation has earned its status as a paradigm by explaining the distribution of matter over large spans of cosmic distance and time. However, its central tenet, that most of the matter in the universe is dark and exotic, is still unproven; the dark matter hypothesis is sufficiently audacious as to continue to warrant a diverse battery of tests. While local searches for dark matter particles or their annihilation signals could prove the existence of the substance itself, studies of cosmological dark matter in situ are vital to fully understand its role in structure formation and evolution. We argue that gravitational lensing provides the cleanest and farthest-reaching probe of dark matter in the universe, which can be combined with other observational techniques to answer the most challenging and exciting questions that will drive the subject in the next decade: What is the distribution of mass on sub-galactic scales? How do galaxy disks form and bulges grow in dark matter halos? How accurate are CDM predictions of halo structure? Can we distinguish between a need for a new substance (dark matter) and a need for new physics (departures from General Relativity)? What is the dark matter made of anyway? We propose that the central tool in this program should be a wide-field optical imaging survey, whose true value is realized with support in the form of high-resolution, cadenced optical/infra-red imaging, and massive-throughput optical spectroscopy.
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these interactions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
We study a two-parameter extension of the cosmological standard model $Lambda$CDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid $Delta N_mathrm{fluid}$ and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak dark matter drag which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of $sigma_8$. We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the $chi$-squared relative to $Lambda$CDM by about 12, corresponding to a preference for non-zero dark matter drag by more than $3 sigma$. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons.
The nature of dark matter is one of the most pressing questions in particle physics. Yet all our present knowledge of the dark sector to date comes from its gravitational interactions with astrophysical systems. Moreover, astronomical results still have immense potential to constrain the particle properties of dark matter. We introduce a simple 2D parameter space which classifies models in terms of a particle physics interaction strength and a characteristic astrophysical scale on which new physics appears, in order to facilitate communication between the fields of particle physics and astronomy. We survey the known astrophysical anomalies that are suggestive of non-trivial dark matter particle physics, and present a theoretical and observational program for future astrophysical measurements that will shed light on the nature of dark matter.
We obtain the first cosmological constraints on interactions between dark matter and protons within the formalism of nonrelativistic effective field theory developed for direct detection. For each interaction operator in the effective theory, parametrized by different powers of the relative velocity of the incoming particles, we use the Planck 2015 cosmic microwave background (CMB) temperature, polarization, and lensing anisotropy to set upper limits on the scattering cross section for all dark matter masses above 15 keV. We find that for interactions associated with a stronger dependence on velocity, dark matter and baryons stay thermally coupled for longer, but the interaction strengths are suppressed at the low temperatures relevant for Planck observations and are thus less constrained. At the same time, cross sections with stronger velocity dependencies are more constrained in the limit of small dark matter mass. In all cases, the effect of dark matter-proton scattering is most prominent on small scales in the CMB power spectra and in the matter power spectrum, and we thus expect substantial improvement over the current limits with data from ground-based CMB experiments and galaxy surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا