Do you want to publish a course? Click here

Unsupervised Discovery of Parts, Structure, and Dynamics

54   0   0.0 ( 0 )
 Added by Zhijian Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Humans easily recognize object parts and their hierarchical structure by watching how they move; they can then predict how each part moves in the future. In this paper, we propose a novel formulation that simultaneously learns a hierarchical, disentangled object representation and a dynamics model for object parts from unlabeled videos. Our Parts, Structure, and Dynamics (PSD) model learns to, first, recognize the object parts via a layered image representation; second, predict hierarchy via a structural descriptor that composes low-level concepts into a hierarchical structure; and third, model the system dynamics by predicting the future. Experiments on multiple real and synthetic datasets demonstrate that our PSD model works well on all three tasks: segmenting object parts, building their hierarchical structure, and capturing their motion distributions.



rate research

Read More

Locating semantically meaningful landmark points is a crucial component of a large number of computer vision pipelines. Because of the small number of available datasets with ground truth landmark annotations, it is important to design robust unsupervised and semi-supervised methods for landmark detection. Many of the recent unsupervised learning methods rely on the equivariance properties of landmarks to synthetic image deformations. Our work focuses on such widely used methods and sheds light on its core problem, its inability to produce equivariant intermediate convolutional features. This finding leads us to formulate a two-step unsupervised approach that overcomes this challenge by first learning powerful pixel-based features and then use the pre-trained features to learn a landmark detector by the traditional equivariance method. Our method produces state-of-the-art results in several challenging landmark detection datasets such as the BBC Pose dataset and the Cat-Head dataset. It performs comparably on a range of other benchmarks.
We study the problem of inferring an object-centric scene representation from a single image, aiming to derive a representation that explains the image formation process, captures the scenes 3D nature, and is learned without supervision. Most existing methods on scene decomposition lack one or more of these characteristics, due to the fundamental challenge in integrating the complex 3D-to-2D image formation process into powerful inference schemes like deep networks. In this paper, we propose unsupervised discovery of Object Radiance Fields (uORF), integrating recent progresses in neural 3D scene representations and rendering with deep inference networks for unsupervised 3D scene decomposition. Trained on multi-view RGB images without annotations, uORF learns to decompose complex scenes with diverse, textured background from a single image. We show that uORF performs well on unsupervised 3D scene segmentation, novel view synthesis, and scene editing on three datasets.
Extracting and predicting object structure and dynamics from videos without supervision is a major challenge in machine learning. To address this challenge, we adopt a keypoint-based image representation and learn a stochastic dynamics model of the keypoints. Future frames are reconstructed from the keypoints and a reference frame. By modeling dynamics in the keypoint coordinate space, we achieve stable learning and avoid compounding of errors in pixel space. Our method improves upon unstructured representations both for pixel-level video prediction and for downstream tasks requiring object-level understanding of motion dynamics. We evaluate our model on diverse datasets: a multi-agent sports dataset, the Human3.6M dataset, and datasets based on continuous control tasks from the DeepMind Control Suite. The spatially structured representation outperforms unstructured representations on a range of motion-related tasks such as object tracking, action recognition and reward prediction.
We propose FineGAN, a novel unsupervised GAN framework, which disentangles the background, object shape, and object appearance to hierarchically generate images of fine-grained object categories. To disentangle the factors without supervision, our key idea is to use information theory to associate each factor to a latent code, and to condition the relationships between the codes in a specific way to induce the desired hierarchy. Through extensive experiments, we show that FineGAN achieves the desired disentanglement to generate realistic and diverse images belonging to fine-grained classes of birds, dogs, and cars. Using FineGANs automatically learned features, we also cluster real images as a first attempt at solving the novel problem of unsupervised fine-grained object category discovery. Our code/models/demo can be found at https://github.com/kkanshul/finegan
Quality-Diversity algorithms refer to a class of evolutionary algorithms designed to find a collection of diverse and high-performing solutions to a given problem. In robotics, such algorithms can be used for generating a collection of controllers covering most of the possible behaviours of a robot. To do so, these algorithms associate a behavioural descriptor to each of these behaviours. Each behavioural descriptor is used for estimating the novelty of one behaviour compared to the others. In most existing algorithms, the behavioural descriptor needs to be hand-coded, thus requiring prior knowledge about the task to solve. In this paper, we introduce: Autonomous Robots Realising their Abilities, an algorithm that uses a dimensionality reduction technique to automatically learn behavioural descriptors based on raw sensory data. The performance of this algorithm is assessed on three robotic tasks in simulation. The experimental results show that it performs similarly to traditional hand-coded approaches without the requirement to provide any hand-coded behavioural descriptor. In the collection of diverse and high-performing solutions, it also manages to find behaviours that are novel with respect to more features than its hand-coded baselines. Finally, we introduce a variant of the algorithm which is robust to the dimensionality of the behavioural descriptor space.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا