Do you want to publish a course? Click here

The Next Generation of Cosmological Measurements with Type Ia Supernovae

264   0   0.0 ( 0 )
 Added by Daniel Scolnic
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

While Type Ia Supernovae (SNe Ia) are one of the most mature cosmological probes, the next era promises to be extremely exciting in the number of different ways SNe Ia are used to measure various cosmological parameters. Here we review the experiments in the 2020s that will yield orders of magnitudes more SNe Ia, and the new understandings and capabilities to constrain systematic uncertainties at a level to match these statistics. We then discuss five different cosmological probes with SNe Ia: the conventional Hubble diagram for measuring dark energy properties, the distance ladder for measuring the Hubble constant, peculiar velocities and weak lensing for measuring sigma8 and strong-lens measurements of H0 and other cosmological parameters. For each of these probes, we discuss the experiments that will provide the best measurements and also the SN Ia-related systematics that affect each one.



rate research

Read More

We introduce a method for identifying twin Type Ia supernovae, and using them to improve distance measurements. This novel approach to Type Ia supernova standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of supernovae, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of supernovae with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory supernovae to 0.083 +/- 0.012 magnitudes, implying a dispersion of 0.072 +/- 0.010 magnitudes in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g, using the final SNfactory spectrophotometric dataset as a reference, this method will be capable of standardizing high-redshift supernovae to within 0.06-0.07 magnitudes. These results imply that at least 3/4 of the variance in Hubble residuals in current supernova cosmology analyses is due to previously unaccounted-for astrophysical differences among the supernovae
In the upcoming decade cadenced wide-field imaging surveys will increase the number of identified $z<0.3$ Type~Ia supernovae (SNe~Ia) from the hundreds to the hundreds of thousands. The increase in the number density and solid-angle coverage of SNe~Ia, in parallel with improvements in the standardization of their absolute magnitudes, now make them competitive probes of the growth of structure and hence of gravity. The peculiar velocity power spectrum is sensitive to the growth index $gamma$, which captures the effect of gravity on the linear growth of structure through the relation $f=Omega_M^gamma$. We present the first projections for the precision in $gamma$ for a range of realistic SN peculiar-velocity survey scenarios. In the next decade the peculiar velocities of SNe~Ia in the local $z<0.3$ Universe will provide a measure of $gamma$ to $pm 0.01$ precision that can definitively distinguish between General Relativity and leading models of alternative gravity.
157 - D. Andrew Howell 2010
Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.
Improving the use of Type Ia supernovae (SNIa) as standard candles requires a better approach to incorporate the relationship between SNIa and the properties of their host galaxies. Using a spectroscopically-confirmed sample of $sim$1600 SNIa, we develop the first empirical model of underlying populations for SNIa light-curve properties that includes their dependence on host-galaxy stellar mass. These populations are important inputs to simulations that are used to model selection effects and correct distance biases within the BEAMS with Bias Correction (BBC) framework. Here we improve BBC to also account for SNIa-host correlations, and we validate this technique on simulated data samples. We recover the input relationship between SNIa luminosity and host-galaxy stellar mass (the mass step, $gamma$) to within 0.004 mags, which is a factor of 5 improvement over the previous method that results in a $gamma$-bias of ${sim}0.02$. We adapt BBC for a novel dust-based model of intrinsic brightness variations, which results in a greatly reduced mass step for data ($gamma = 0.017 pm 0.008$), and for simulations ($gamma =0.006 pm 0.007$). Analysing simulated SNIa, the biases on the dark energy equation-of-state, $w$, vary from $Delta w = 0.006(5)$ to $0.010(5)$ with our new BBC method; these biases are significantly smaller than the $0.02(5)$ $w$-bias using previous BBC methods that ignore SNIa-host correlations.
We show how spectra of Type Ia supernovae (SNe Ia) at maximum light can be used to improve cosmological distance estimates. In a companion article, we used manifold learning to build a three-dimensional parameterization of the intrinsic diversity of SNe Ia at maximum light that we call the Twins Embedding. In this article, we discuss how the Twins Embedding can be used to improve the standardization of SNe Ia. With a single spectrophotometrically-calibrated spectrum near maximum light, we can standardize our sample of SNe Ia with an RMS of $0.101 pm 0.007$ mag, which corresponds to $0.084 pm 0.009$ mag if peculiar velocity contributions are removed and $0.073 pm 0.008$ mag if a larger reference sample were obtained. Our techniques can standardize the full range of SNe Ia, including those typically labeled as peculiar and often rejected from other analyses. We find that traditional light curve width + color standardization such as SALT2 is not sufficient. The Twins Embedding identifies a subset of SNe Ia including but not limited to 91T-like SNe Ia whose SALT2 distance estimates are biased by $0.229 pm 0.045$ mag. Standardization using the Twins Embedding also significantly decreases host-galaxy correlations. We recover a host mass step of $0.040 pm 0.020$ mag compared to $0.092 pm 0.024$ mag for SALT2 standardization on the same sample of SNe Ia. These biases in traditional standardization methods could significantly impact future cosmology analyses if not properly taken into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا