Do you want to publish a course? Click here

Protoplanetary Disk Science Enabled by Extremely Large Telescopes

76   0   0.0 ( 0 )
 Added by Hannah Jang-Condell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The processes that transform gas and dust in circumstellar disks into diverse exoplanets remain poorly understood. One key pathway is to study exoplanets as they form in their young ($sim$few~Myr) natal disks. Extremely Large Telescopes (ELTs) such as GMT, TMT, or ELT, can be used to establish the initial chemical conditions, locations, and timescales of planet formation, via (1)~measuring the physical and chemical conditions in protoplanetary disks using infrared spectroscopy and (2)~studying planet-disk interactions using imaging and spectro-astrometry. Our current knowledge is based on a limited sample of targets, representing the brightest, most extreme cases, and thus almost certainly represents an incomplete understanding. ELTs will play a transformational role in this arena, thanks to the high spatial and spectral resolution data they will deliver. We recommend a key science program to conduct a volume-limited survey of high-resolution spectroscopy and high-contrast imaging of the nearest protoplanetary disks that would result in an unbiased, holistic picture of planet formation as it occurs.



rate research

Read More

We present a study of the effect of crowding on stellar photometry. We develop an analytical model through which we are able to predict the error in magnitude and color for a given star for any combination of telescope resolution, stellar luminosity function, background surface brightness, and distance. We test our predictions with Monte Carlo simulations of the LMC globular cluster NGC 1835, for resolutions corresponding to a seeing-limited telescope, the $HST$, and an AO-corrected 30-m (near diffraction limited) telescope. Our analytically predicted magnitude errors agree with the simulation results to within $sim$20%. The analytical model also predicts that errors in color are strongly affected by the correlation of crowding--induced photometric errors between bands as is seen in the simulations. Using additional Monte Carlo simulations and our analytical crowding model, we investigate the photometric accuracy which 30-m and 100-m Extremely Large Telescopes (ELTs) will be able to achieve at distances extending to the Virgo cluster. We argue that for stellar populations work, ELTs quickly become crowding-limited, suggesting that low--Strehl AO systems may be sufficient for this type of science.
The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.
As we begin to discover rocky planets in the habitable zone of nearby stars with missions like TESS and CHEOPS, we will need quick advancements on instrumentation and observational techniques that will enable us to answer key science questions, such as What are the atmospheric characteristics of habitable zone rocky planets? How common are Earth-like biosignatures in rocky planets?} How similar or dissimilar are those planets to Earth? Over the next decade we expect to have discovered several Earth-analog candidates, but we will not have the tools to study the atmospheres of all of them in detail. Ground-based ELTs can identify biosignatures in the spectra of these candidate exo-Earths and understand how the planets atmospheres compare to the Earth at different epochs. Transit spectroscopy, high-resolution spectroscopy, and reflected-light direct imaging on ELTs can identify multiple biosignatures for habitable zone, rocky planets around M stars at optical to near-infrared wavelengths. Thermal infrared direct imaging can detect habitable zone, rocky planets around AFGK stars, identifying ozone and motivating reflected-light follow-up observations with NASA missions like HabEx/LUVOIR. Therefore, we recommend that the Astro2020 Decadal Survey Committee support: (1) the search for Earth-like biosignatures on rocky planets around nearby stars as a key science case; (2) the construction over the next decade of ground-based Extremely Large Telecopes (ELTs), which will provide the large aperture and spatial resolution necessary to start revealing the atmospheres of Earth-analogues around nearby stars; (3) the development of instrumentation that optimizes the detection of biosignatures; and (4) the generation of accurate line lists for potential biosignature gases, which are needed as model templates to detect those molecules.
Surveys reveal that terrestrial- to Neptune-sized planets (1 $< R <$ 4 R$_{rm{Earth}}$) are the most common type of planets in our galaxy. Detecting and characterizing such small planets around nearby stars holds the key to understanding the diversity of exoplanets and will ultimately address the ubiquitousness of life in the universe. The following fundamental questions will drive research in the next decade and beyond: (1) how common are terrestrial to Neptune-sized planets within a few AU of their host star, as a function of stellar mass? (2) How does planet composition depend on planet mass, orbital radius, and host star properties? (3) What are the energy budgets, atmospheric dynamics, and climates of the nearest worlds? Addressing these questions requires: a) diffraction-limited spatial resolution; b) stability and achievable contrast delivered by adaptive optics; and c) the light-gathering power of extremely large telescopes (ELTs), as well as multi-wavelength observations and all-sky coverage enabled by a comprehensive US ELT Program. Here we provide an overview of the challenge, and promise of success, in detecting and comprehensively characterizing small worlds around the very nearest stars to the Sun with ELTs. This white paper extends and complements the material presented in the findings and recommendations published in the National Academy reports on Exoplanet Science Strategy and Astrobiology Strategy for the Search for Life in the Universe.
170 - Patrice Martinez 2010
Earlier apodized-pupil Lyot coronagraphs (APLC) have been studied and developed to enable high-contrast imaging for exoplanet detection and characterization with present-day ground-based telescopes. With the current interest in the development of the next generation of telescopes, the future extremely large telescopes (ELTs), alternative APLC designs involving multistage configuration appear attractive. The interest of these designs for application to ELTs is studied. Performance and sensitivity of multistage APLC to ELT specificities are analyzed and discussed, taking into account several ineluctable coronagraphic telescope error sources by means of numerical simulations. Additionally, a first laboratory experiment with a two-stages-APLC in the near-infrared (H-band) is presented to further support the numerical treatment. Multistage configurations are found to be inappropriate to ELTs. The theoretical gain offered by a multistage design over the classical single-stage APLC is largely compromised by the presence of inherent error sources occurring in a coronagraphic telescope, and in particular in ELTs. The APLC remains an attractive solution for ELTs, but rather in its conventional single-stage configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا