Do you want to publish a course? Click here

Two-dimensional nodal-loop half metal in monolayer MnN

198   0   0.0 ( 0 )
 Added by Shanshan Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) materials with nodal-loop band crossing have been attracting great research interest. However, it remains a challenge to find 2D nodal loops that are robust against spin-orbit coupling (SOC) and realized in magnetic states. Here, based on first-principles calculations and theoretical analysis, we predict that monolayer MnN is a 2D nodal-loop half metal with fully spin polarized nodal loops. We show that monolayer MnN has a ferromagnetic ground state with out-of-plane magnetization. Its band structure shows half metallicity with three low-energy bands belonging to the same spin channel. The crossing between these bands forms two concentric nodal loops centered around the $Gamma$ point near the Fermi level. Remarkably, the nodal loops and their spin polarization are robust under SOC, due to the protection of a mirror symmetry. We construct an effective model to characterize the fully polarized emergent nodal-loop fermions. We also find that a uniaxial strain can induce a loop transformation from a localized single loop circling around $Gamma$ to a pair of extended loops penetrating the Brillouin zone.



rate research

Read More

textit{Ab-initio} calculations based on density functional theory (DFT) are performed to study the structural, electronic, and magnetic properties of two-dimensional (2D) free-standing honeycomb CrAs. We show that CrAs has low buckled stable structure. Magnetic CrAs has larger buckling than non-magnetic CrAs. 2D-CrAs is a ferromagnetic semiconductor for lattice constant $a leq 3.71$AA, and above this lattice constant CrAs is a half-metal ferromagnet. 2D-CrAs is shown to be half-metal ferromagnetic with magnetic moment of 3.0$mu_{rm{B}}$ per unit cell, at equilibrium structure. The $d_{z}^{2}$ orbital of $e_{g}$ band is completely empty in the spin-down state whereas it is almost occupied in the spin-up state, and the magnetic moment in the $e_{g}$ band is mainly dominated by the $d_{z}^{2}$ orbital of Cr. The $d_{zx}/d_{zy}$ and $d_{xy}$ orbitals of $t_{2g}$ band are partially occupied in the spin-up state and behaves as metal whereas they are insulator in the spin-down state. Phonon calculations confirm the thermodynamic stability of 2D-CrAs. The ferromagnetic (FM) and antiferromagnetic (AFM) interaction between the Cr atoms reveal that the FM state is more stable than the AFM state of 2D-CrAs.
A nodal loop is formed by band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions and can be classified as type-I or type-II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on firstprinciples calculations, we predict the realization of such loops in the existing electride material Ca2As. For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.
87 - S. A. Owerre 2018
We study the nontrivial linear magnon band crossings in the collinear antiferromagnets on the two-dimensional (2D) CaVO lattice, also realized in some iron-based superconductors such as AFe$_{1.6+x}$Se$_2$ (A = K, Rb, Cs). It is shown that the combination of space-inversion and time-reversal symmetry ($mathcal{PT}$-symmetry) leads to doubly-degenerate eight magnon branches, which cross each other linearly along a one-dimensional loop in the 2D Brillouin zone. We show that the Dirac nodal loops (DNLs) are not present in the collinear ferromagnet on this lattice. Thus, the current 2D antiferromagnetic DNLs are symmetry-protected and they provide a novel platform to search for their analogs in 2D electronic antiferromagnetic systems.
Two-dimensional (2D) multiferroics have been casted great attention owing to their promising prospects for miniaturized electronic and memory devices.Here, we proposed a highly stable 2D multiferroic, VOF monolayer, which is an intrinsic ferromagnetic half semiconductor with large spin polarization ~2 $mu_{B}/V$ atom and a significant uniaxial magnetic anisotropy along a-axis (410 $mu eV/V$ atom). Meanwhile, it shows excellent ferroelectricity with a large spontaneous polarization 32.7 $mu C/cm^{2}$ and a moderate energy barrier (~43 meV/atom) between two ferroelectric states, which can be ascribed to the Jahn-Teller distortion.Moreover, VOF monolayer harbors an ultra-large negative Poissons ratio in the in-plane direction (~-0.34). The Curie temperature evaluated from the Monte Carlo simulations based on the Ising model is about 215 K, which can be enhanced room temperature under -4% compressive biaxial strain.The combination of ferromagnetism and ferroelectricity in the VOF monolayer could provide a promising platform for future study of multiferroic effects and next-generation multifunctional nanoelectronic device applications.
A three-dimensional (3D) nodal-loop semimetal phase is exploited to engineer a number of intriguing phases featuring different peculiar topological surface states. In particular, by introducing various two-dimensional gap terms to a 3D tight-binding model of a nodal-loop semimetal, we obtain a rich variety of topological phases of great interest to ongoing theoretical and experimental studies, including chiral insulator, degenerate-surface-loop insulator, second-order topological insulator, as well as Weyl semimetal with tunable Fermi arc profiles. The unique concept underlying our approach is to engineer topological surface states that inherit their dispersion relations from a gap term. The results provide one rather unified principle for the creation of novel topological phases and can guide the search for new topological materials. Two-terminal transport studies are also carried out to distinguish the engineered topological phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا