No Arabic abstract
The lowest-mass stars, brown dwarfs and giant exoplanets span a minimum in the mass-radius relationship that probes the fundamental physics of extreme states of matter, magnetism, and fusion. This White Paper outlines scientific opportunities and the necessary resources for modeling and measuring the mass-radius relationship in this regime.
High resolution spectroscopy of the lowest-mass stars and brown dwarfs reveals their origins, multiplicity, compositions and physical properties, with implications for the star formation and chemical evolution history of the Milky Way. We motivate the need for high-resolution, infrared spectroscopic surveys to reach these faint sources.
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramatic increase in the number and quality of classical pulsator observations, providing unprecedented possibilities to study stellar physics and galactic stellar populations. In this white paper, we describe key science questions and necessary facilities to continue the asteroseismology revolution into the 2020s.
Direct determination of fundamental stellar parameters has many profound and wide-ranging impacts throughout astrophysics. These determinations are rooted in high angular resolution observations. In particular, as long-baseline optical interferometry has matured over the past decade, increasingly large survey samples are serving to empirically ground the basic parameters of these building blocks of the universe. True imaging and improved parametric fitting are becoming routinely available, an essential component of fully characterizing stars, stellar environments, and planets these stars may host.
Galactic binaries with orbital periods less than $approx$1 hr are strong gravitational wave sources in the mHz regime, ideal for the Laser Interferometer Space Antenna (LISA). In fact, theory predicts that emph{LISA} will resolve tens of thousands of Galactic binaries individually with a large fraction being bright enough for electromagnetic observations. This opens up a new window where we can study a statistical sample of compact Galactic binaries in both, the electromagnetic as well the gravitational wavebands. Using multi-messenger observations we can measure tidal effects in detached double WD systems, which strongly impact the outcome of WD mergers. For accreting WDs as well as NS binaries, multi-messenger observations give us the possibility to study the angular momentum transport due to mass transfer. In this white paper we present an overview of the opportunities for research on Galactic binaries using multi-messenger observations and summarize some recommendations for the 2020 time-frame.
The L/T transition is an important evolutionary phase in brown dwarf atmospheres, providing us with a unique opportunity to explore the effects of clouds, convection, winds, gravity and metallicity across a very narrow temperature range. Understanding these physical processes is critical for understanding ultracool atmospheres. In the next decade, we will answer three key questions regarding L/T transition atmospheres: 1. What is the physical mechanism behind the L/T transition? 2. What is the spatial extent of atmospheric structures at the L/T transition? 3. How do gravity and metallicity affect the L/T transition? The theory and methods developed for brown dwarfs will be used in the 2030s and beyond for solar-system age giant exoplanets and eventually habitable zone earth analogues. Developing these techniques now are crucial.