Well-posedness of a diffuse interface model for Hele-Shaw flows


Abstract in English

We study a diffuse interface model describing the motion of two viscous fluids driven by the surface tension in a Hele-Shaw cell. The full system consists of the Cahn-Hilliard equation coupled with the Darcys law. We address the physically relevant case in which the two fluids have different viscosities (unmatched viscosities case) and the free energy density is the logarithmic Helmholtz potential. In dimension two we prove the uniqueness of weak solutions under a regularity criterion, and the existence and uniqueness of global strong solutions. In dimension three we show the existence and uniqueness of strong solutions, which are local in time for large data or global in time for appropriate small data. These results extend the analysis obtained in the matched viscosities case by Giorgini, Grasselli and Wu (Ann. Inst. H. Poincar{e} Anal. Non Lin{e}aire 35 (2018), 318-360). Furthermore, we prove the uniqueness of weak solutions in dimension two by taking the well-known polynomial approximation of the logarithmic potential.

Download