Do you want to publish a course? Click here

Autler-Townes splitting and acoustically induced transparency based on Love waves interacting with pillared meta-surface

94   0   0.0 ( 0 )
 Added by Yuxin Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Autler-Townes Splitting (ATS) and Electromagnetically Induced Transparency (EIT) are similar phenomena but distinct in nature. They have been widely discussed and distinguished by employing the Akaike information criterion (AIC). However, such work is lacking in acoustic system. In this work, the interaction of Love waves with two-line pillared meta-surface is numerically investigated by Finite Element Method. Acoustic analogue of ATS, Fabry-Perot resonance and cavity modes are first demonstrated in two lines of identical pillars by varying the distance between the pillar lines. By detuning the radius of one line of pillars, Fabry-Perot resonance along with two different pillar resonances give rise to the acoustic analogue of EIT (AIT) when the distance between the pillar lines is a multiple of half wavelength. ATS and AIT formula models are used to fit the transmission spectra, showing good agreements with numerical results. The quality of the fit models is quantitatively evaluated by resorting to the AIC. We show that theoretical and analytical discrimination between ATS and AIT are methodologically complementary. These results should have important consequences for potential acoustic applications such as wave control, designing of meta-materials and bio-sensors.



rate research

Read More

Autler-Townes splitting (ATS) and electromagnetically-induced transparency (EIT) both yield transparency in an absorption profile, but only EIT yields strong transparency for a weak pump field due to Fano interference. Empirically discriminating EIT from ATS is important but so far has been subjective. We introduce an objective method, based on Akaikes information criterion, to test ATS vs. EIT from experimental data and determine which pertains. We apply our method to a recently reported induced-transparency experiment in superconducting circuit quantum electrodynamics.
We study the microwave absorption of a driven three-level quantum system, which is realized by a superconducting flux quantum circuit (SFQC), with a magnetic driving field applied to the two upper levels. The interaction between the three-level system and its environment is studied within the Born-Markov approximation, and we take into account the effects of the driving field on the damping rates of the three-level system. We study the linear response of the driven three-level SFQC to a weak probe field. The linear magnetic susceptibility of the SFQC can be changed by both the driving field and the bias magnetic flux. When the bias magnetic flux is at the optimal point, the transition from the ground state to the second excited state is forbidden and the three-level SFQC has a ladder-type transition. Thus, the SFQC responds to the probe field like natural atoms with ladder-type transitions. However, when the bias magnetic flux deviates from the optimal point, the three-level SFQC has a cyclic transition, thus it responds to the probe field like a combination of natural atoms with ladder-type transitions and natural atoms with $Lambda$-type transitions. In particular, we provide detailed discussions on the conditions for realizing electromagnetically induced transparency and Autler-Townes splitting in three-level SFQCs.
We theoretically investigate the tunneling-induced transparency (TIT) and the Autler-Townes (AT) doublet and triplet in a triple-quantum-dot system. For the resonant tunneling case, we show that the TIT induces a transparency dip in a weak-tunneling regime and no anticrossing occurs in the eigenenergies of the system Hamiltonian. However, in a strong-tunneling regime, we show that the TIT evolves to the AT splitting, which results in a well-resolved doublet and double anticrossings. For the off-resonance case, we demonstrate that, in the weak-tunneling regime, the double TIT is realized with a new detuning-dependent dip, where the anticrossing is also absent. In the strong-tunneling regime, the AT triplet is realized with triple anticrossings and a wide detuning-dependent transparency window by manipulating one of the energy-level detunings. Our results can be applied to quantum measurement and quantum-optics devices in solid systems.
We study the absorption spectrum of a probe field by a {Lambda}-type three-level system, which is coupled to a quantized control field through the two upper energy levels. The probe field is applied to the ground and the second excited states. When the quantized control field is in vacuum, we derive a threshold condition to discern vacuum induced transparency (VIT) and vacuum induced Autler- Townes splitting (ATS). We also find that the parameter change from VIT to vacuum induced ATS is very similar to that from broken PT symmetry to PT symmetry. Moreover, we find the photon number resolved spectrum in the parameter regime of vacuum induced ATS when the mean photon number of the quantized control field is changed from zero (vacuum) to a finite number. However, there is no photon number resolved spectrum in the parameter regime of VIT even that the quantized control field contains the finite number of photons. Finally, we further discuss possible experimental realization.
We propose a general theoretical scheme to investigate the crossover from electromagnetically induced transparency (EIT) to Autler-Townes splitting (ATS) in open ladder-type atomic and molecular systems with Doppler broadening. We show that when the wavenumber ratio $k_c/k_papprox -1$, EIT, ATS, and EIT-ATS crossover exist for both ladder-I and ladder-II systems, where $k_c$ ($k_p$) is the wavenumber of control (probe) field. Furthermore, when $k_c/k_p$ is far from $-1$ EIT can occur but ATS is destroyed if the upper state of the ladder-I system is a Rydberg state. In addition, ATS exists but EIT is not possible if the control field used to couple the two lower states of the ladder-II system is a microwave field. The theoretical scheme developed here can be applied to atoms, molecules, and other systems (including Na$_2$ molecules, and Rydberg atoms), and the results obtained may have practical applications in optical information processing and transformation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا