Do you want to publish a course? Click here

Long-lived and transient supersolid behaviors in dipolar quantum gases

89   0   0.0 ( 0 )
 Added by Daniel Petter
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

By combining theory and experiments, we demonstrate that dipolar quantum gases of both $^{166}$Er and $^{164}$Dy support a state with supersolid properties, where a spontaneous density modulation and a global phase coherence coexist. This paradoxical state occurs in a well defined parameter range, separating the phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side. Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning, starting from a stable condensate, we observe that $^{166}$Er and $^{164}$Dy exhibit a striking difference in the lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in $^{166}$Er the supersolid behavior only survives a few tens of milliseconds, we observe coherent density modulations for more than $150,$ms in $^{164}$Dy. Building on this long lifetime, we demonstrate an alternative path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.



rate research

Read More

We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by increasing the weight of the dipolar interaction and approaching the transition to the supersolid phase. The critical angular velocity for the existence of an energetically stable vortex decreases in the supersolid, due to the reduced value of the density in the interdroplet region. The angular momentum per particle associated with the vortex line is shown to be smaller than $hbar$, reflecting the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For large angular velocities, when the distance between vortices becomes comparable to the interdroplet distance, the vortices are arranged into a honeycomb structure, which coexists with the triangular geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dipole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
Advances in light shaping for optical trapping of neutral particles have led to the development of box traps for ultracold atoms and molecules. These traps have allowed the creation of homogeneous quantum gases and opened new possibilities for studies of many-body physics. They simplify the interpretation of experimental results, provide more direct connections with theory, and in some cases allow qualitatively new, hitherto impossible experiments. Here we review progress in this emerging field.
Recent experimental breakthroughs in trapping, cooling and controlling ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the way toward the investigation of highly tunable quantum systems, where anisotropic, long-range dipolar interactions play a prominent role at the many-body level. In this article we review recent theoretical studies concerning the physics of such systems. Starting from a general discussion on interaction design techniques and microscopic Hamiltonians, we provide a summary of recent work focused on many-body properties of dipolar systems, including: weakly interacting Bose gases, weakly interacting Fermi gases, multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D and quasi-1D geometries. Within each of these topics, purely dipolar effects and connections with experimental realizations are emphasized.
Distintictive features of supersolids show up in their rotational properties. We calculate the moment of inertia of a harmonically trapped dipolar Bose-Einstein condensed gas as a function of the tunable scattering length parameter, providing the transition from the (fully) superfluid to the supersolid phase and eventually to an incoherent crystal of self-bound droplets. The transition from the superfluid to the supersolid phase is characterized by a jump in the moment on inertia, revealing its first order nature. In the case of elongated trapping in the plane of rotation we show that the the moment of inertia determines the value of the frequency of the scissors mode, which is significantly affected by the reduction of superfluidity in the supersolid phase. The case of isotropic trapping is instead well suited to study the formation of quantized vortices, which are shown to be characterized, in the supersolid phase, by a sizeable deformed core, caused by the presence of the sorrounding density peaks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا