Modal analysis using photonic lanterns coupled to arrays of waveguides


Abstract in English

We present a new concept of an integrated optics component capable of measuring the complex amplitudes of the modes at the tip of a multimode waveguide. The device uses a photonic lantern to split the optical power carried by an $N$-modes waveguide among a collection of single-mode waveguides that excite a periodic array of at least $N^2$ single-mode evanescently-coupled waveguides. The power detected at each output of the array is a linear combination of the products of the modal amplitudes-a relation that can, under suitable conditions, be inverted allowing the derivation of the amplitudes and relative phases of the modal mixture at the input. The expected performance of the device is discussed and its application to the real-time measurement of modal instability in high power fiber lasers is proposed.

Download