Do you want to publish a course? Click here

Streamlined Variational Inference for Higher Level Group-Specific Curve Models

130   0   0.0 ( 0 )
 Added by Matt Wand Professor
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A two-level group-specific curve model is such that the mean response of each member of a group is a separate smooth function of a predictor of interest. The three-level extension is such that one grouping variable is nested within another one, and higher level extensions are analogous. Streamlined variational inference for higher level group-specific curve models is a challenging problem. We confront it by systematically working through two-level and then three-level cases and making use of the higher level sparse matrix infrastructure laid down in Nolan and Wand (2018). A motivation is analysis of data from ultrasound technology for which three-level group-specific curve models are appropriate. Whilst extension to the number of levels exceeding three is not covered explicitly, the pattern established by our systematic approach sheds light on what is required for even higher level group-specific curve models.



rate research

Read More

We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the network autoregression framework. The VB approach allows for the automatic identification of the dynamic structure of such a model and obtains a direct approximation of the posterior density. Compared to Markov Chain Monte Carlo (MCMC) based sampling approaches, the VB approach achieves enhanced computational efficiency without sacrificing estimation accuracy. In the simulation study conducted here, the proposed VB approach detects various types of proper active structures for dynamic network models. Compared to the alternative approach, the proposed method achieves similar or better accuracy, and its computational time is halved. In a real data analysis scenario of day-ahead natural gas flow prediction in the German gas transmission network with 51 nodes between October 2013 and September 2015, the VB approach delivers promising forecasting accuracy along with clearly detected structures in terms of dynamic dependence.
203 - Yan Liu , Yuguo Chen 2021
Latent space models are popular for analyzing dynamic network data. We propose a variational approach to estimate the model parameters as well as the latent positions of the nodes in the network. The variational approach is much faster than Markov chain Monte Carlo algorithms, and is able to handle large networks. Theoretical properties of the variational Bayes risk of the proposed procedure are provided. We apply the variational method and latent space model to simulated data as well as real data to demonstrate its performance.
Many classification techniques when the data are curves or functions have been recently proposed. However, the presence of misaligned problems in the curves can influence the performance of most of them. In this paper, we propose a model-based approach for simultaneous curve registration and classification. The method is proposed to perform curve classification based on a functional logistic regression model that relies on both scalar variables and functional variables, and to align curves simultaneously via a data registration model. EM-based algorithms are developed to perform maximum likelihood inference of the proposed models. We establish the identifiability results for curve registration model and investigate the asymptotic properties of the proposed estimation procedures. Simulation studies are conducted to demonstrate the finite sample performance of the proposed models. An application of the hyoid bone movement data from stroke patients reveals the effectiveness of the new models.
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributions, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا