Application of the path optimization method to the sign problem in an effective model of QCD with a repulsive vector-type interaction


Abstract in English

The path optimization method is applied to a QCD effective model with the Polyakov loop and the repulsive vector-type interaction at finite temperature and density to circumvent the model sign problem. We show how the path optimization method can increase the average phase factor and control the model sign problem. This is the first study which correctly treats the repulsive vector-type interaction in the QCD effective model with the Polyakov-loop via the Markov-chain Monte-Carlo approach. It is shown that the complexification of the temporal component of the gluon field and also the vector-type auxiliary field are necessary to evade the model sign problem within the standard path-integral formulation.

Download