In this short note we reconsider the integrable case of the Hamiltonian N-species Volterra system, as it has been introduced by Vito Volterra in 1937. In the first part, we discuss the corresponding conserved quantities, and comment about the solutions of the equations of motion. In the second part we focus our attention on the properties of the simplest model, in particular on period and frequencies of the periodic orbits. The discussion and the results presented here are to be viewed as a complement to a more general work, devoted to the construction of a global stationary state model for a sustainable economy in the Hamiltonian formalism.