A triaxial projected shell model including configurations with more than four quasiparticles in the configuration space is developed, and applied to investigate the recently reported five chiral doublets candidates in a single even-even nucleus $^{136}$Nd. The energy spectra and transition probability ratios $B(M1)/B(E2)$ are reproduced satisfactorily. The configuration mixing along the rotational bands is studied by analyzing the intrinsic composition of the eigenfunctions. The chiral geometry of these nearly degenerate bands is examined by the textit{K plot} and the textit{azimuthal plot}, and the evolution from the chiral vibration to the static chirality with spin is clearly demonstrated for four pairs of partner bands. From the features in the textit{azimuthal plot}, it is difficult to interpret the other candidate as chiral partners.