The survey of the nearby space and continuous monitoring of the Near Earth Objects (NEOs) and especially Near Earth Asteroids (NEAs) are essential for the future of our planet and should represent a priority for our solar system research and nearby space exploration. More computing power and sophisticated digital tracking algorithms are needed to cope with the larger astronomy imaging cameras dedicated for survey telescopes. The paper presents the NEARBY platform that aims to experiment new algorithms for automatic image reduction, detection and validation of moving objects in astronomical surveys, specifically NEAs. The NEARBY platform has been developed and experimented through a collaborative research work between the Technical University of Cluj-Napoca (UTCN) and the University of Craiova, Romania, using observing infrastructure of the Instituto de Astrofisica de Canarias (IAC) and Isaac Newton Group (ING), La Palma, Spain. The NEARBY platform has been developed and deployed on the UTCNs cloud infrastructure and the acquired images are processed remotely by the astronomers who transfer it from ING through the web interface of the NEARBY platform. The paper analyzes and highlights the main aspects of the NEARBY platform development, and the results and conclusions on the EURONEAR surveys.