Do you want to publish a course? Click here

An exact study of phase transitions in mean field Potts models

189   0   0.0 ( 0 )
 Added by Antonio Moro
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct the exact partition function of the Potts model on a complete graph subject to external fields with linear and nematic type couplings. The partition function is obtained as a solution to a linear diffusion equation and the free energy, in the thermodynamic limit, follows from its semiclassical limit. Analysis of singularities of the equations of state reveals the occurrence of phase transitions of nematic type at not zero external fields and allows for an interpretation of the phase transitions in terms of shock dynamics in the space of thermodynamics variables. The approach is shown at work in the case of a q-state model for q=3 but the method generalises to arbitrary q.



rate research

Read More

We study mean-field classical $N$-vector models, for integers $Nge 2$. We use the theory of large deviations and Steins method to study the total spin and its typical behavior, specifically obtaining non-normal limit theorems at the critical temperatures and central limit theorems away from criticality. Important special cases of these models are the XY ($N=2$) model of superconductors, the Heisenberg ($N=3$) model (previously studied in cite{KM} but with a correction to the critical distribution here), and the Toy ($N=4$) model of the Higgs sector in particle physics.
The phase transitions of random-field q-state Potts models in d=3 dimensions are studied by renormalization-group theory by exact solution of a hierarchical lattice and, equivalently, approximate Migdal-Kadanoff solutions of a cubic lattice. The recursion, under rescaling, of coupled random-field and random-bond (induced under rescaling by random fields) coupled probability distributions is followed to obtain phase diagrams. Unlike the Ising model (q=2), several types of random fields can be defined for q >= 3 Potts models, including random-axis favored, random-axis disfavored, random-axis randomly favored or disfavored cases, all of which are studied. Quantitatively very similar phase diagrams are obtained, for a given q for the three types of field randomness, with the low-temperature ordered phase persisting, increasingly as temperature is lowered, up to random-field threshold in d=3, which is calculated for all temperatures below the zero-field critical temperature. Phase diagrams thus obtained are compared as a function of $q$. The ordered phase in the low-q models reaches higher temperatures, while in the high-q models it reaches higher random fields. This renormalization-group calculation result is physically explained.
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models without symmetry, the curves on which the zeros lie are generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models, and the $q$-state Potts model for $q$ large enough.
The dynamical behavior of a star network of spins, wherein each of N decoupled spins interact with a central spin through non uniform Heisenberg XX interaction is exactly studied. The time-dependent Schrodinger equation of the spin system model is solved starting from an arbitrary initial state. The resulting solution is analyzed and briefly discussed.
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sanov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا