Do you want to publish a course? Click here

An extremely low-mass He white dwarf orbiting the millisecond pulsar J1342+2822B in the globular cluster M3

63   0   0.0 ( 0 )
 Added by Mario Cadelano
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of the companion star to the millisecond pulsar J1342+2822B in the globular cluster M3. We exploited a combination of near-ultraviolet and optical observations acquired with the Hubble Space Telescope in order to search for the optical counterparts to the known millisecond pulsars in this cluster. At a position in excellent agreement with that of the radio pulsar J1342+2822B (M3B), we have identified a blue and faint object (mF275W approx 22.45) that, in the color-magnitude diagram of the cluster, is located in the region of He core white dwarfs. From the comparison of the observed magnitudes with theoretical cooling tracks we have estimated the physical properties of the companion star: it has a mass of only 0.19 pm 0.02 Msun, a surface temperature of 12 pm 1 x 10^3 K and a cooling age of 1.0pm0.2 Gyr. Its progenitor was likely a ~ 0.84 M star and the bulk of the mass-transfer activity occurred during the sub-giant branch phase. The companion mass, combined with the pulsar mass function, implies that this system is observed almost edge-on and that the neutron star has a mass of 1.1 pm 0.3 Msun, in agreement with the typical values measured for recycled neutron stars in these compact binary systems. We have also identified a candidate counterpart to the wide and eccentric binary millisecond pulsar J1342+2822D. It is another white dwarf with a He core and a mass of 0.22 pm 0.2 Msun, implying that the system is observed at a high inclination angle and hosts a typical NS with a mass of 1.3 pm 0.3 Msun. At the moment, the large uncertainty on the radio position of this millisecond pulsar prevents us from robustly concluding that the detected star is its optical counterpart.



rate research

Read More

83 - D. Mata Sanchez 2020
Binaries harbouring millisecond pulsars enable a unique path to determine neutron star masses: radio pulsations reveal the motion of the neutron star, while that of the companion can be characterised through studies in the optical range. PSR J1012+5307 is a millisecond pulsar in a 14.5-h orbit with a helium-core white dwarf companion. In this work we present the analysis of an optical spectroscopic campaign, where the companion star absorption features reveal one of the lightest known white dwarfs. We determine a white dwarf radial velocity semi-amplitude of K_2 = 218.9 +- 2.2 km/s, which combined with that of the pulsar derived from the precise radio timing, yields a mass ratio of q=10.44+- 0.11. We also attempt to infer the white dwarf mass from observational constraints using new binary evolution models for extremely low-mass white dwarfs, but find that they cannot reproduce all observed parameters simultaneously. In particular, we cannot reconcile the radius predicted from binary evolution with the measurement from the photometric analysis (R_WD=0.047+-0.003 Rsun). Our limited understanding of extremely low-mass white dwarf evolution, which results from binary interaction, therefore comes as the main factor limiting the precision with which we can measure the mass of the white dwarf in this system. Our conservative white dwarf mass estimate of M_WD = 0.165 +- 0.015 Msun, along with the mass ratio enables us to infer a pulsar mass of M_NS = 1.72 +- 0.16 Msun. This value is clearly above the canonical 1.4 Msun, therefore adding PSR J1012+5307 to the growing list of massive millisecond pulsars.
We report on the discovery of the companion star to the millisecond pulsar J1631+3627F in the globular cluster M13. By means of a combination of optical and near-UV high-resolution observations obtained with the Hubble Space Telescope, we identified the counterpart at the radio source position. Its location in the color-magnitude diagrams reveals that the companion star is a faint (V sim 24.3) He-core white dwarf. We compared the observed companion magnitudes with those predicted by state-of-the-art binary evolution models and found out that it has a mass of 0.23 pm 0.03 Msun, a radius of 0.033^+0.004_-0.005 Rsun and a surface temperature of 11500^+1900_-1300 K. Combining the companion mass with the pulsar mass function is not enough to determine the orbital inclination and the neutron star mass; however, the last two quantities become correlated: we found that either the system is observed at a low inclination angle, or the neutron star is massive. In fact, assuming that binaries are randomly aligned with respect to the observer line of sight, there is a sim 70% of probability that this system hosts a neutron star more massive than 1.6 Msun. In fact, the maximum and median mass of the neutron star, corresponding to orbital inclination angles of 90 deg and 60 deg, are M_NS,max = 3.1 pm 0.6 Msun and M_NS,med = 2.4 pm 0.5 Msun, respectively. On the other hand, assuming also an empirical neutron star mass probability distribution, we found that this system could host a neutron star with a mass of 1.5 pm 0.1 Msun if orbiting with a low-inclination angle around 40 deg.
We report the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with the Rossi X-Ray Timing Explorer on August 30th, October 1st and October 28th, 2009, during the decays of ~4 day outbursts of a newly X-ray transient source in NGC 6440. By studying the Doppler shift of the pulsation frequency, we find that the system is an ultra-compact binary with an orbital period of 57.3 minutes and a projected semi-major axis of 6.22 light-milliseconds. Based on the mass function, we estimate a lower limit to the mass of the companion to be 0.0067 M_sun (assuming a 1.4 M_sun neutron star). This new pulsar shows the shortest outburst recurrence time among AMXPs (~1 month). If this behavior does not cease, this AMXP has the potential to be one of the best sources in which to study how the binary system and the neutron star spin evolve. Furthermore, the characteristics of this new source indicate that there might exist a population of AMXPs undergoing weak outbursts which are undetected by current all-sky X-ray monitors. NGC 6440 is the only globular cluster to host two known AMXPs, while no AMXPs have been detected in any other globular cluster.
126 - Robert P. Kraft 1999
We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I HIRES reveals a Li I 6707 Angstrom resonance doublet of 520 milli-Angstrom equivalent width, and our analysis places the star among the most Li-rich giants known: log[epsilon(Li)] ~= +3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color, and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably only happen rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion.
75 - S. S. Larsen 2020
Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, and measurements of their composition can therefore provide insight into the build-up of the chemical elements in galaxies in the early Universe. We report a massive GC in the Andromeda Galaxy (M31) that is extremely depleted in heavy elements. Its iron abundance is about 800 times lower than that of the Sun, and about three times lower than in the most iron-poor GCs previously known. It is also strongly depleted in magnesium. These measurements challenge the notion of a metallicity floor for GCs and theoretical expectations that massive GCs could not have formed at such low metallicities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا