Imaging individual solute atoms at crystalline imperfections in metals


Abstract in English

Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining contrast interpretation from density-functional theory (DFT) and elemental identification enabled by time-of-flight mass-spectrometry and data mining. Analytical-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature.

Download