No Arabic abstract
Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining contrast interpretation from density-functional theory (DFT) and elemental identification enabled by time-of-flight mass-spectrometry and data mining. Analytical-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature.
THz near field microscopy opens a new frontier in material science. High spatial resolution requires the detection crystal to have uniform and reproducible response. We present the THz near field spatial and temporal response of ZnTe and GaP and examine possible properties that give rise to the ZnTe degraded signal.
An additional value of the Avogadro constant was obtained by counting the atoms in isotopically enriched Si spheres. With respect to the previous determination, the spheres were etched and repolished to eliminate metal contaminations and to improve the roundness. In addition, all the input quantities -- molar mass, lattice parameter, mass, and volume -- were remeasured aiming at a smaller uncertainty. In order to make the values given Refs. 1 and 2 usable for a least squares adjustment, we report about the estimate of their correlation.
Materials characterization and property measurements are a cornerstone of material science, providing feedback from synthesis to applications. Traditionally, a single sample is used to derive information on a single point in composition space, and imperfections, impurities and stochastic details of material structure are deemed irrelevant or complicating factors in analysis. Here we demonstrate that atomic-scale studies of a single nominal composition can provide information on a finite area of chemical space. This information can be used to reconstruct the material properties in a finite composition and temperature range. We develop a statistical physics-based framework that incorporates chemical and structural data to infer effective atomic interactions driving segregation in a La5/8Ca3/8MnO3 thin-film. A variational autoencoder is used to determine anomalous behaviors in the composition phase diagram. This study provides a framework for creating generative models from diverse data and provides direct insight into the driving forces for cation segregation in manganites.
In a joint theoretical and experimental investigation we show that a series of transition metals with strained body-centered cubic lattice ---W, Ta, Nb, and Mo--- host surface states that are topologically protected by mirror symmetry. Our finding extends the class of topologically nontrivial systems by topological crystalline transition metals. The investigation is based on independent calculations of the electronic structures and of topological invariants, the results of which agree with established properties of the Dirac-type surface state in W(110). To further support our prediction, we investigate both experimentally by spin-resolved inverse photoemission and theoretically an unoccupied topologically nontrivial surface state in Ta(110).
We present an extensive first-principles database of solute-vacancy, homoatomic, heteroatomic solute-solute, and solute-solute-vacancy binding energies of relevant alloying elements in aluminum. We particularly focus on the systems with major alloying elements in aluminum, i.e., Cu, Mg, and Si. We consider physical factors such as solute size and formation energies of intermetallic compounds to correlate with binding energies. Systematic studies of the homoatomic solute-solute-vacancy and heteroatomic (Cu, Mg, or Si)-solute-vacancy complexes reveal the overarching effect of the vacancy in stabilizing solute-solute pairs. The computed binding energies of the solute-solute-vacancy triplet successfully explain several experimental observations that remained unexplained by the reported pair binding energies in literature. The binding energy database presented here elucidates the interaction between solute cluster and vacancy in aluminum, and it is expected to provide insight into the design of advanced Al alloys with tailored properties.