Connecting Bayes factor and the Region of Practical Equivalence (ROPE) Procedure for testing interval null hypothesis


Abstract in English

There has been strong recent interest in testing interval null hypothesis for improved scientific inference. For example, Lakens et al (2018) and Lakens and Harms (2017) use this approach to study if there is a pre-specified meaningful treatment effect in gerontology and clinical trials, which is different from the more traditional point null hypothesis that tests for any treatment effect. Two popular Bayesian approaches are available for interval null hypothesis testing. One is the standard Bayes factor and the other is the Region of Practical Equivalence (ROPE) procedure championed by Kruschke and others over many years. This paper establishes a formal connection between these two approaches with two benefits. First, it helps to better understand and improve the ROPE procedure. Second, it leads to a simple and effective algorithm for computing Bayes factor in a wide range of problems using draws from posterior distributions generated by standard Bayesian programs such as BUGS, JAGS and Stan. The tedious and error-prone task of coding custom-made software specific for Bayes factor is then avoided.

Download