Linear quadratic regulation of polytopic time-inhomogeneous Markov jump linear systems (extended version)


Abstract in English

In most real cases transition probabilities between operational modes of Markov jump linear systems cannot be computed exactly and are time-varying. We take into account this aspect by considering Markov jump linear systems where the underlying Markov chain is polytopic and time-inhomogeneous, i.e. its transition probability matrix is varying over time, with variations that are arbitrary within a polytopic set of stochastic matrices. We address and solve for this class of systems the infinite-horizon optimal control problem. In particular, we show that the optimal controller can be obtained from a set of coupled algebraic Riccati equations, and that for mean square stabilizable systems the optimal finite-horizon cost corresponding to the solution to a parsimonious set of coupled difference Riccati equations converges exponentially fast to the optimal infinite-horizon cost related to the set of coupled algebraic Riccati equations. All the presented concepts are illustrated on a numerical example showing the efficiency of the provided solution.

Download