The quantum analog of Lyapunov exponent has been discussed in the Sachdev-Ye-Kitaev (SYK) model and its various generalizations. Here we investigate possible quantum analog of Kolmogorov-Arnold-Moser (KAM) theorem in the $ U(1)/Z_2 $ Dicke model which contains both the rotating wave (RW) term $ g $ and the counter-RW term $ g ^{prime} $ at a finite $ N $. We first study its energy spectrum by the analytical $ 1/J $ expansion, supplemented by the non-perturbative instanton method.Then we evaluate its energy level statistic (ELS) at a given parity sector by Exact diagonization (ED) at any $ 0 < beta= g ^{prime}/g < 1 $. We establish an intimate relation between the KAM theorem and the evolution of the scattering states and the emergence of bound states as the ratio $ beta $ increases. We stress the important roles played by the Berry phase and instantons in the establishment of the quantum analogue of the KAM theorem to the $ U(1)/Z_2 $ Dicke model.Experimental implications in cavity QED systems such as cold atoms inside an optical cavity or superconducting qubits in side a microwave cavity are also discussed.