Do you want to publish a course? Click here

Gauge PDE and AKSZ-type Sigma Models

176   0   0.0 ( 0 )
 Added by Maxim Grigoriev
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A gauge PDE is a natural notion which arises by abstracting what physicists call a local gauge field theory defined in terms of BV-BRST differential (not necessarily Lagrangian). We study supergeometry of gauge PDEs paying particular attention to globally well-defined definitions and equivalences of such objects. We demonstrate that a natural geometrical language to work with gauge PDEs is that of $Q$-bundles. In particular, we demonstrate that any gauge PDE can be embedded into a super-jet bundle of the $Q$-bundle. This gives a globally well-defined version of the so-called parent formulation. In the case of reparameterization-invariant systems, the parent formulation takes the form of an AKSZ-type sigma model with an infinite-dimensional target space.



rate research

Read More

We discuss a general procedure to encode the reduction of the target space geometry into AKSZ sigma models. This is done by considering the AKSZ construction with target the BFV model for constrained graded symplectic manifolds. We investigate the relation between this sigma model and the one with the reduced structure. We also discuss several examples in dimension two and three when the symmetries come from Lie group actions and systematically recover models already proposed in the literature.
Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative known for some time is to allow for degenerate presymplectic structure in the target space. This leads to a very concise AKSZ-like representation for frame-like Lagrangians of gauge systems. In this work we concentrate on Einstein gravity and show that not only the Lagrangian but also the full-scale Batalin--Vilkovisky formulation is naturally encoded in the presymplectic AKSZ formulation, giving an elegant supergeometrical construction of BV for Cartan-Weyl action. The same applies to the main structures of the respective Hamiltonian BFV formulation.
In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar and their conjugate superfields. Here we introduce CCL sigma models that are invariant under U(1) duality rotations exchanging the dynamical variables and their equations of motion. The Lagrangians of such sigma models prove to obey a partial differential equation that is analogous to the self-duality equation obeyed by U(1) duality invariant models for nonlinear electrodynamics. These sigma models are self-dual under a Legendre transformation that simultaneously dualises (i) the chiral multiplet into a complex linear one; and (ii) the complex linear multiplet into a chiral one. Any CCL sigma model possesses a dual formulation given in terms of two chiral multiplets. The U(1) duality invariance of the CCL sigma model proves to be equivalent, in the dual chiral formulation, to a manifest U(1) invariance rotating the two chiral scalars. Since the target space has a holomorphic Killing vector, the sigma model possesses a third formulation realised in terms of a chiral multiplet and a tensor multiplet. The family of U(1) duality invariant CCL sigma models includes a subset of N=2 supersymmetric theories. Their target spaces are hyper Kahler manifolds with a non-zero Killing vector field. In the case that the Killing vector field is triholomorphic, the sigma model admits a dual formulation in terms of a self-interacting off-shell N=2 tensor multiplet. We also identify a subset of CCL sigma models which are in a one-to-one correspondence with the U(1) duality invariant models for nonlinear electrodynamics. The target space isometry group for these sigma models contains a subgroup U(1) x U(1).
161 - S. A. Fedoruk , E. A. Ivanov , 2012
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the relevant vacuum states to make explicit the fact that their number is not affected by adding the torsion terms.
We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expressed in terms of the solutions of the NLSM that have the same Pohlmeyer counterpart as the seed. Accordingly, we show that the dressing method can be applied without solving any differential equations. In this context a superposition principle emerges: The dressed solution is expressed as a non-linear superposition of the seed with solutions of the NLSM with the same Pohlmeyer counterpart as the seed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا