We consider the problem of finding the resonances of the Laplacian on truncated Riemannian cones. In a similar fashion to Cheeger--Taylor, we construct the resolvent and scattering matrix for the Laplacian on cones and truncated cones. Following Stefanov, we show that the resonances on the truncated cone are distributed asymptotically as Ar^n + o(r^n), where A is an explicit coefficient. We also conclude that the Laplacian on a non-truncated cone has no resonances away from zero.