Do you want to publish a course? Click here

Takin: An open-source software for experiment planning, visualisation, and data analysis

86   0   0.0 ( 0 )
 Added by Tobias Weber
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Due to the instruments non-trivial resolution function, measurements on triple-axis spectrometers require extra care from the experimenter in order to obtain optimal results and to avoid unwanted spurious artefacts. We present a free and open-source software system that aims to ease many of the tasks encountered during the planning phase, in the execution and in data treatment of experiments performed on neutron triple-axis spectrometers. The software is currently in use and has been successfully tested at the MLZ, but can be configured to work with other triple-axis instruments and instrument control systems.



rate research

Read More

Motivation: In this paper we present the latest release of EBIC, a next-generation biclustering algorithm for mining genetic data. The major contribution of this paper is adding support for big data, making it possible to efficiently run large genomic data mining analyses. Additional enhancements include integration with R and Bioconductor and an option to remove influence of missing value on the final result. Results: EBIC was applied to datasets of different sizes, including a large DNA methylation dataset with 436,444 rows. For the largest dataset we observed over 6.6 fold speedup in computation time on a cluster of 8 GPUs compared to running the method on a single GPU. This proves high scalability of the algorithm. Availability: The latest version of EBIC could be downloaded from http://github.com/EpistasisLab/ebic . Installation and usage instructions are also available online.
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. The servo is capable of feedback bandwidths up to roughly 1~MHz (limited by the 320~ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of $^{27}$Al$^+$ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
218 - M. Beck , K. Bokeloh , H. Hein 2014
The KATRIN experiment is going to search for the average mass of the electron antineutrino with a sensitivity of 0.2 eV/c2. It uses a retardation spectrometer of MAC-E filter type to accurately measure the shape of the electron spectrum at the endpoint of tritium beta decay. In order to achieve the planned sensitivity the transmission properties of the spectrometer have to be understood with high precision for all initial conditions. For this purpose an electron source has been developed that emits single electrons at adjustable total energy and adjustable emission angle. The emission is pointlike and can be moved across the full flux tube that is imaged onto the detector. Here, we demonstrate that this novel type of electron source can be used to investigate the transmission properties of a MAC-E filter in detail.
J-PET Framework is an open-source software platform for data analysis, written in C++ and based on the ROOT package. It provides a common environment for implementation of reconstruction, calibration and filtering procedures, as well as for user-level analyses of Positron Emission Tomography data. The library contains a set of building blocks that can be combined by users with even little programming experience, into chains of processing tasks through a convenient, simple and well-documented API. The generic input-output interface allows processing the data from various sources: low-level data from the tomography acquisition system or from diagnostic setups such as digital oscilloscopes, as well as high-level tomography structures e.g. sinograms or a list of lines-of-response. Moreover, the environment can be interfaced with Monte Carlo simulation packages such as GEANT and GATE, which are commonly used in the medical scientific community.
We present characterization of a lock-in amplifier based on a field programmable gate array capable of demodulation at up to 50 MHz. The system exhibits 90 nV/sqrt(Hz) of input noise at an optimum demodulation frequency of 500 kHz.The passband has a full-width half-maximum of 2.6 kHz for modulation frequencies above 100 kHz. Our code is opensource and operates on a commercially available platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا