Do you want to publish a course? Click here

Detectability of Gravitational Wave from a population of Inspiralling Black Holes in Milky Way Mass Galaxies

73   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We estimate the rate of inspiral for a population of stellar mass BHs in the star cluster around the super massive black hole at the center of Milky Way mass galaxies. Our approach is based on an orbit averaged Fokker Planck approach. This is then followed by a post-processing approach, which incorporates the impact of the angular momentum diffusion and the GW dissipation in the evolution of system. We make a sample of 10000 BHs with different initial semi-major and eccentricities with the distribution of $f_c(a)/a$ and $e$, respectively. Where $f_c(a)$ refers to the phase-space distribution function for cth species. Angular momentum diffusion leads to an enhancement in the eccentricity of every system in the above sample and so increases the rate of inspiral. We compute the fraction of time that every system spends in the LISA band with the signal to noise ratio $rm{SNR} geq 8$. Every system eventually approaches the loss-cone with a replenishment rate given by the diffusion rate of the cluster, $mu/ rm{Gyr}^{-1} lesssim 1 $. This small rate reduces the total rate of the inspiral for individual MW mass galaxies with an estimate $R_{obs} lesssim 10^{-5} yr^{-1}$. It is expected though that a collection of $N_{gal} simeq 10^4$ MW mass galaxies lead to an observable GW signal in the LISA band.



rate research

Read More

Isolated black holes in our Galaxy have eluded detection so far. We present here a comprehensive study on the detectability of isolated stellar-mass astrophysical black holes that accrete interstellar gas from molecular clouds in both the local region and the Central Molecular Zone. We adopt a state-of-the-art model for the accretion physics backed up by numerical simulations, and study the number of observable sources in both the radio and X-ray band, as a function of a variety of parameters. We discuss in particular the impact of the astrophysical uncertainties on our prediction for the number of bright X-ray sources in the central region of the Galaxy. We finally consider future developments in the radio domain, and assess the potential of SKA to detect a population of astrophysical black holes accreting gas in our Galaxy.
The direct measurement of gravitational waves is a powerful tool for surveying the population of black holes across the universe. The first gravitational wave catalog from LIGO has detected black holes as heavy as $sim50~M_odot$, colliding when our Universe was about half its current age. However, there is yet no unambiguous evidence of black holes in the intermediate-mass range of $10^{2-5}~M_odot$. Recent electromagnetic observations have hinted at the existence of IMBHs in the local universe; however, their masses are poorly constrained. The likely formation mechanisms of IMBHs are also not understood. Here we make the case that multiband gravitational wave astronomy --specifically, joint observations by space- and ground-based gravitational wave detectors-- will be able to survey a broad population of IMBHs at cosmological distances. By utilizing general relativistic simulations of merging black holes and state-of-the-art gravitational waveform models, we classify three distinct population of binaries with IMBHs in the multiband era and discuss what can be observed about each. Our studies show that multiband observations involving the upgraded LIGO detector and the proposed space-mission LISA would detect the inspiral, merger and ringdown of IMBH binaries out to redshift ~2. Assuming that next-generation detectors, Einstein Telescope, and Cosmic Explorer, are operational during LISAs mission lifetime, we should have multiband detections of IMBH binaries out to redshift ~5. To facilitate studies on multiband IMBH sources, here we investigate the multiband detectability of IMBH binaries. We provide analytic relations for the maximum redshift of multiband detectability, as a function of black hole mass, for various detector combinations. Our study paves the way for future work on what can be learned from IMBH observations in the era of multiband gravitational wave astronomy.
We present an open-access database which includes a synthetic catalog of black holes in the Milky Way. To calculate evolution of single and binary stars we used updated population synthesis code StarTrack. We applied a new model of star formation history and chemical evolution of Galactic disk, bulge and halo synthesized from observational and theoretical data. We find that at the current moment Milky Way (disk+bulge+halo) contains about 1.2 x 10^8 single black holes with average mass of about 14 Msun and 9.3 x 10^6 BHs in binary systems with average mass of 19 Msun. We present basic statistical properties of BH populations such as distributions of single and binary BH masses, velocities, orbital parameters or numbers of BH binary systems in different evolutionary configurations. We find that the most massive BHs are formed in mergers of binary systems, such as BH-MS, BH+He, BH-BH. The metallicity of stellar population has a significant impact on the final BH mass due to the stellar winds. Therefore the most massive single BH in our simulation, 113 Msun, originates from a merger of a helium star and a black hole in a low metallicity stellar environment in Galactic halo. The most massive BH in binary system is 60 Msun and was also formed in Galactic halo. We constrain that only 0.006% of total Galactic halo mass (including dark matter) could be hidden in the form of stellar origin BHs which are not detectable by current observational surveys. Galactic binary BHs are minority (10% of all Galactic BHs) and most of them are in BH-BH systems. The current Galactic merger rates for two considered common envelope models which are: 3-81 Myr^-1 for BH-BH, 1-9 Myr^-1, for BH-NS and 14-59 Myr^-1 for NS-NS systems. Data files are available at https://bhc.syntheticuniverse.org/.
We present a self-consistent prediction from a large-scale cosmological simulation for the population of `wandering supermassive black holes (SMBHs) of mass greater than $10^6$ M$_{odot}$ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the Romulus25 cosmological simulation (Tremmel et al. 2017), which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of $5.1 pm 3.3$ SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of $12.2 pm 8.4$ SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyrs, often accreted by their host halo in the early Universe. We find, with $>4sigma$ significance, that wandering SMBHs are preferentially found outside of galactic disks.
Gravitational waves (GWs) from binary black hole (BBH) mergers provide a new probe of massive-star evolution and the formation channels of binary compact objects. By coupling the growing sample of BBH systems with population synthesis models, we can begin to constrain the parameters of such models and glean unprecedented knowledge about the inherent physical processes that underpin binary stellar evolution. In this study, we apply a hierarchical Bayesian model to mass measurements from a synthetic GW sample to constrain the physical prescriptions in population models and the relative fraction of systems generated from various channels. We employ population models of two canonical formation scenarios in our analysis --- isolated binary evolution involving a common-envelope phase and dynamical formation within globular clusters --- with model variations for different black hole natal kick prescriptions. We show that solely with chirp mass measurements, it is possible to constrain natal kick prescriptions and the relative fraction of systems originating from each formation channel with $mathcal{O}(100)$ of confident detections. This framework can be extended to include additional formation scenarios, model parameters, and measured properties of the compact binary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا