Do you want to publish a course? Click here

Convergence of gradient descent-ascent analyzed as a Newtonian dynamical system with dissipation

80   0   0.0 ( 0 )
 Added by H. Sebastian Seung
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A dynamical system is defined in terms of the gradient of a payoff function. Dynamical variables are of two types, ascent and descent. The ascent variables move in the direction of the gradient, while the descent variables move in the opposite direction. Dynamical systems of this form or very similar forms have been studied in diverse fields such as game theory, optimization, neural networks, and population biology. Gradient descent-ascent is approximated as a Newtonian dynamical system that conserves total energy, defined as the sum of the kinetic energy and a potential energy that is proportional to the payoff function. The error of the approximation is a residual force that violates energy conservation. If the residual force is purely dissipative, then the energy serves as a Lyapunov function, and convergence of bounded trajectories to steady states is guaranteed. A previous convergence theorem due to Kose and Uzawa required the payoff function to be convex in the descent variables, and concave in the ascent variables. Here the assumption is relaxed, so that the payoff function need only be globally `less convex or `more concave in the ascent variables than in the descent variables. Such relative convexity conditions allow the existence of multiple steady states, unlike the convex-concave assumption. When combined with sufficient conditions that imply the existence of a minimax equilibrium, boundedness of trajectories is also assured.

rate research

Read More

Many recent AI architectures are inspired by zero-sum games, however, the behavior of their dynamics is still not well understood. Inspired by this, we study standard gradient descent ascent (GDA) dynamics in a specific class of non-convex non-concave zero-sum games, that we call hidden zero-sum games. In this class, players control the inputs of smooth but possibly non-linear functions whose outputs are being applied as inputs to a convex-concave game. Unlike general zero-sum games, these games have a well-defined notion of solution; outcomes that implement the von-Neumann equilibrium of the hidden convex-concave game. We prove that if the hidden game is strictly convex-concave then vanilla GDA converges not merely to local Nash, but typically to the von-Neumann solution. If the game lacks strict convexity properties, GDA may fail to converge to any equilibrium, however, by applying standard regularization techniques we can prove convergence to a von-Neumann solution of a slightly perturbed zero-sum game. Our convergence guarantees are non-local, which as far as we know is a first-of-its-kind type of result in non-convex non-concave games. Finally, we discuss connections of our framework with generative adversarial networks.
We study a wide class of non-convex non-concave min-max games that generalizes over standard bilinear zero-sum games. In this class, players control the inputs of a smooth function whose output is being applied to a bilinear zero-sum game. This class of games is motivated by the indirect nature of the competition in Generative Adversarial Networks, where players control the parameters of a neural network while the actual competition happens between the distributions that the generator and discriminator capture. We establish theoretically, that depending on the specific instance of the problem gradient-descent-ascent dynamics can exhibit a variety of behaviors antithetical to convergence to the game theoretically meaningful min-max solution. Specifically, different forms of recurrent behavior (including periodicity and Poincare recurrence) are possible as well as convergence to spurious (non-min-max) equilibria for a positive measure of initial conditions. At the technical level, our analysis combines tools from optimization theory, game theory and dynamical systems.
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) (Mescheder et al., 2017). SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.
We provide tight finite-time convergence bounds for gradient descent and stochastic gradient descent on quadratic functions, when the gradients are delayed and reflect iterates from $tau$ rounds ago. First, we show that without stochastic noise, delays strongly affect the attainable optimization error: In fact, the error can be as bad as non-delayed gradient descent ran on only $1/tau$ of the gradients. In sharp contrast, we quantify how stochastic noise makes the effect of delays negligible, improving on previous work which only showed this phenomenon asymptotically or for much smaller delays. Also, in the context of distributed optimization, the results indicate that the performance of gradient descent with delays is competitive with synchronous approaches such as mini-batching. Our results are based on a novel technique for analyzing convergence of optimization algorithms using generating functions.
139 - Yan Yan , Yi Xu , Qihang Lin 2020
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it objective gap}. However, its extension to solving stochastic min-max problems with strong convexity and strong concavity still remains open, and it is still unclear whether a fast rate of $O(1/T)$ for the {it duality gap} is achievable for stochastic min-max optimization under strong convexity and strong concavity. Although some recent studies have proposed stochastic algorithms with fast convergence rates for min-max problems, they require additional assumptions about the problem, e.g., smoothness, bi-linear structure, etc. In this paper, we bridge this gap by providing a sharp analysis of epoch-wise stochastic gradient descent ascent method (referred to as Epoch-GDA) for solving strongly convex strongly concave (SCSC) min-max problems, without imposing any additional assumption about smoothness or the functions structure. To the best of our knowledge, our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O(1/T)$ for the duality gap of general SCSC min-max problems. We emphasize that such generalization of Epoch-GD for strongly convex minimization problems to Epoch-GDA for SCSC min-max problems is non-trivial and requires novel technical analysis. Moreover, we notice that the key lemma can also be used for proving the convergence of Epoch-GDA for weakly-convex strongly-concave min-max problems, leading to a nearly optimal complexity without resorting to smoothness or other structural conditions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا