Do you want to publish a course? Click here

4MOST Consortium Survey 4: Milky Way Disc and Bulge High-Resolution Survey (4MIDABLE-HR)

118   0   0.0 ( 0 )
 Added by T. Bensby
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The signatures of the formation and evolution of a galaxy are imprinted in its stars. Their velocities, ages, and chemical compositions present major constraints on models of galaxy formation, and on various processes such as the gas inflows and outflows, the accretion of cold gas, radial migration, and the variability of star formation activity. Understanding the evolution of the Milky Way requires large observational datasets of stars via which these quantities can be determined accurately. This is the science driver of the 4MOST MIlky way Disc And BuLgE High-Resolution (4MIDABLE-HR) survey: to obtain high-resolution spectra at $R sim 20,000$ and to provide detailed elemental abundances for large samples of stars in the Galactic disc and bulge. High data quality will allow us to provide accurate spectroscopic diagnostics of two million stellar spectra: precise radial velocities; rotation; abundances of many elements, including those that are currently only accessible in the optical, such as Li, s-, and r-process; and multi-epoch spectra for a sub-sample of stars. Synergies with complementary missions like Gaia and TESS will provide masses, stellar ages and multiplicity, forming a multi-dimensional dataset that will allow us to explore and constrain the origin and structure of the Milky Way.



rate research

Read More

The mechanisms of the formation and evolution of the Milky Way are encoded in the orbits, chemistry and ages of its stars. With the 4MOST MIlky way Disk And BuLgE Low-Resolution Survey (4MIDABLE-LR) we aim to study kinematic and chemical substructures in the Milky Way disc and bulge region with samples of unprecedented size out to larger distances and greater precision than conceivable with Gaia alone or any other ongoing or planned survey. Gaia gives us the unique opportunity for target selection based almost entirely on parallax and magnitude range, hence increasing the efficiency in sampling larger Milky Way volumes with well-defined and effective selection functions. Our main goal is to provide a detailed chrono-chemo-kinematical extended map of our Galaxy and the largest Gaia follow-up down to $G = 19$ magnitudes (Vega). The complex nature of the disc components (for example, large target densities and highly structured extinction distribution in the Milky Way bulge and disc area), prompted us to develop a survey strategy with five main sub-surveys that are tailored to answer the still open questions about the assembly and evolution of our Galaxy, while taking full advantage of the Gaia data.
We will study the formation history of the Milky Way, and the earliest phases of its chemical enrichment, with a sample of more than 1.5 million stars at high galactic latitude. Elemental abundances of up to 20 elements with a precision of better than 0.2 dex will be derived for these stars. The sample will include members of kinematically coherent substructures, which we will associate with their possible birthplaces by means of their abundance signatures and kinematics, allowing us to test models of galaxy formation. Our target catalogue is also expected to contain 30,000 stars at a metallicity of less than one hundredth that of the Sun. This sample will therefore be almost a factor of 100 larger than currently existing samples of metal-poor stars for which precise elemental abundances are available (determined from high-resolution spectroscopy), enabling us to study the early chemical evolution of the Milky Way in unprecedented detail.
314 - A. Helmi , M. Irwin , A. Deason 2019
The goal of this survey is to study the formation and evolution of the Milky Way halo to deduce its assembly history and the 3D distribution of mass in the Milky Way. The combination of multi-band photometry, Gaia proper motion and parallax data, and radial velocities and the metallicity and elemental abundances obtained from low-resolution spectra of halo giants with 4MOST, will yield an unprecedented characterisation of the Milky Way halo and its interface with the thick disc. The survey will produce a volume- and magnitude-limited complete sample of giant stars in the halo. It will cover at least 10,000 square degrees of high Galactic latitude, and measure line-of-sight velocities with a precision of 1-2 km/s as well as metallicities to within 0.2 dex.
X-ray and mid-infrared emission are signposts of the accretion of matter onto the supermassive black holes that reside at the centres of most galaxies. As a major step towards understanding accreting supermassive black holes and their role in the evolution of galaxies, we will use the 4MOST multi-object spectrograph to provide a highly complete census of active galactic nuclei over a large fraction of the extragalactic sky observed in X-rays by eROSITA that is visible to 4MOST. We will systematically follow up all eROSITA point-like extragalactic X-ray sources (mostly active galactic nuclei), and complement them with a heavily obscured active galactic nuclei selection approach using mid-infrared data from the Wide-field Infrared Survey Explorer (WISE). The X-ray and mid-infrared flux limits of eROSITA and WISE are well matched to the spectroscopic capabilities of a 4-metre-class telescope, allowing us to reach completeness levels of ~80-90% for all X-ray selected active galactic nuclei with fluxes $f_{0.5-2 {rm keV}} > 10^{-14}$ erg s$^{-1}$ cm$^{-2}$; this is about a factor of 30 deeper than the ROSAT all-sky survey. With these data we will determine the physical properties (redshift, luminosity, line emission strength, masses, etc.) of up to one million supermassive black holes, constrain their cosmic evolution and clustering properties, and explore the connection between active galactic nuclei and large-scale structure over redshifts $0 le z le 6$.
WAVES is designed to study the growth of structure, mass and energy on scales of ~1 kpc to ~10 Mpc over a 7 Gyr timeline. On the largest length scales (1-10 Mpc) WAVES will measure the structures defined by groups, filaments and voids, and their emergence over recent times. Comparisons with bespoke numerical simulations will be used to confirm, refine or refute the Cold Dark Matter paradigm. At intermediate length scales (10 kpc-1 Mpc) WAVES will probe the size and mass distribution of galaxy groups, as well as the galaxy merger rates, in order to directly measure the assembly of dark matter halos and stellar mass. On the smallest length scales (1-10 kpc) WAVES will provide accurate distance and environmental measurements to complement high-resolution space-based imaging to study the mass and size evolution of galaxy bulges, discs and bars. In total, WAVES will provide a panchromatic legacy dataset of ~1.6 million galaxies, firmly linking the very low ($z < 0.1$) and intermediate ($z sim 0.8$) redshift Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا