No Arabic abstract
As of August 2019, among the more than 4000 confirmed exoplanets, only one has been detected in a globular cluster (GC) M4. The scarce of exoplanet detections motivates us to employ direct $N$-body simulations to investigate the dynamical stability of planets in young massive clusters (YMCs), which are potentially the progenitors of GCs. In an $N=128{rm k}$ cluster of virial radius 1.7 pc (comparable to Westerlund-1), our simulations show that most wide-orbit planets ($ageq 20$~au) will be ejected within a timescale of 10 Myr. Interestingly, more than $70%$ of planets with $a<5$~au survive in the 100 Myr simulations. Ignoring planet-planet scattering and tidal damping, the survivability at $t$ Myr as a function of initial semi-major axis $a_0$ in au in such a YMC can be described as $f_{rm surv}(a_0, t)=-0.33 log_{10}(a_0) left(1 - e^{-0.0482t} right) + 1$. Upon ejection, about $28.8%$ of free-floating planets (FFPs) have sufficient speeds to escape from the host cluster at a crossing timescale. The other FFPs will remain bound to the cluster potential, but the subsequent dynamical evolution of the stellar system can result in the delayed ejection of FFPs from the host cluster. Although a full investigation of planet population in GCs requires extending the simulations to multi-Gyr, our results suggest that wide-orbit planets and free-floating planets are unlikely to be found in GCs.
The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the conditions under which star clusters form and the impact of these often harsh environments on the evolution of their stellar and substellar members. We demonstrate the vital role numerical simulations play to uncover both key issues. Using dynamical models of different star cluster environments we show the variety of effects stellar interactions potentially have. Moreover, our significantly improved measure of mass segregation reveals that it can occur rapidly even for star clusters without substructure. This finding is a critical step to resolve the controversial debate on mass segregation in young star clusters and provides strong constraints on their initial conditions.
In the last decade we have come to realize that the traditional classification of stellar clusters into open and globular clusters cannot be easily extended beyond the realm of the Milky Way, and that even for our Galaxy it is not fully valid. The main failure of the traditional classification is the existence of Massive Young Clusters (MYCs), which are massive like Globular Clusters (GCs) but also young like open clusters. We describe here the mass and age distributions of clusters in general with an emphasis on MYCs. We also discuss the issue of what constitutes a cluster and try to establish a general classification scheme.
In order to investigate whether the brightest globular clusters (GCs) in the giant elliptical galaxies are similar to the less luminous GCs like those found in Local Group galaxies, we study the velocity dispersion and structural parameter correlations of a sample of bright GCs in the nearest gE galaxy NGC 5128. UVES echelle spectrograph on the ESO VLT, and EMMI on the ESO NTT were used to obtain high resolution spectra of bright GCs in NGC 5128. The velocity dispersions were obtained for all the targets. The structural parameters were either taken from the existing literature, or derived from our VLT FORS1 images using the ISHAPE software. The velocity dispersion and structural parameter measurements were used to obtain masses and M/L_V ratios of 22 clusters. The masses of the clusters in our sample range from M_vir=10^5-10^7 M_sun and the average M/L_V is 3+/-1. The three GCs harbouring X-ray point sources are the second, third and sixth most massive in our sample. The most massive cluster, HCH99-18, is also the brightest and the largest in size. It has the mass (M_vir=1.4x10^7 M_sun) an order of magnitude larger than the most massive clusters in the Local Group, and a high M/L_V ratio (4.7+/-1.2). We discuss briefly possible formation scenarios for this object. The correlations of structural parameters, velocity dispersion, masses and M/L_V for the bright GCs in NGC 5128 extend the properties established for the most massive Local Group clusters towards those characteristic of dE galaxy nuclei and Ultra Compact Dwarfs (UCDs). The detection of the mass-radius and the mass-M/L_V relations for the GCs with masses greater than ~2x10^6 M_sun provides the missing link between ``normal old globular clusters, young massive clusters, and evolved objects like UCDs. (Abridged)
We have carried out a search for massive white dwarfs (WDs) in the direction of young open star clusters using the Gaia DR2 database. The aim of this survey was to provide robust data for new and previously known high-mass WDs regarding cluster membership, to highlight WDs previously included in the Initial Final Mass Relation (IFMR) that are unlikely members of their respective clusters according to Gaia astrometry and to select an unequivocal WD sample that could then be compared with the host clusters turnoff masses. All promising WD candidates in each cluster CMD were followed up with spectroscopy from Gemini in order to determine whether they were indeed WDs and derive their masses, temperatures and ages. In order to be considered cluster members, white dwarfs were required to have proper motions and parallaxes within 2, 3, or 4-$sigma$ of that of their potential parent cluster based on how contaminated the field was in their region of the sky, have a cooling age that was less than the cluster age and a mass that was broadly consistent with the IFMR. A number of WDs included in curre
We have studied the properties of a sample of 67 very blue and likely young massive clusters in M31 extracted from the Bologna Revised Catalog of globular clusters, selected according to their color [(B-V) < 0.45] and/or to the strength of their Hbeta spectral index (Hbeta > 3.5 A). Their existence in M31 has been noted by several authors in the past; we show here that these Blue Luminous Compact Clusters (BLCCs) are a significant fraction (>~ 15%) of the whole globular cluster system of M31. Compared to the global properties of the M31 globular cluster system, they appear to be intrinsically fainter, morphologically less concentrated, and with a shallower Balmer jump and enhanced $Hbeta$ absorption in their spectra. Empirical comparison with integrated properties of clusters with known age as well as with theoretical SSP models consistently indicate that their typical age is less than ~2 Gyr, while they probably are not so metal-poor as deduced if considered to be old. Either selecting BLCCs by their (B-V) colors or by the strength of their Hbeta index the cluster sample turns out to be distributed onto the outskirts of M31 disc, sharing the kinematical properties of the thin, rapidly rotating disc component. If confirmed to be young and not metal-poor, these clusters indicate the occurrence of a significant recent star formation in the thin disc of M31, although they do not set constraints on the epoch of its early formation.