Do you want to publish a course? Click here

Limitations of Pinned AUC for Measuring Unintended Bias

111   0   0.0 ( 0 )
 Added by Lucy Vasserman
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This report examines the Pinned AUC metric introduced and highlights some of its limitations. Pinned AUC provides a threshold-agnostic measure of unintended bias in a classification model, inspired by the ROC-AUC metric. However, as we highlight in this report, there are ways that the metric can obscure different kinds of unintended biases when the underlying class distributions on which bias is being measured are not carefully controlled.



rate research

Read More

Facial analysis models are increasingly used in applications that have serious impacts on peoples lives, ranging from authentication to surveillance tracking. It is therefore critical to develop techniques that can reveal unintended biases in facial classifiers to help guide the ethical use of facial analysis technology. This work proposes a framework called textit{image counterfactual sensitivity analysis}, which we explore as a proof-of-concept in analyzing a smiling attribute classifier trained on faces of celebrities. The framework utilizes counterfactuals to examine how a classifiers prediction changes if a face characteristic slightly changes. We leverage recent advances in generative adversarial networks to build a realistic generative model of face images that affords controlled manipulation of specific image characteristics. We then introduce a set of metrics that measure the effect of manipulating a specific property on the output of the trained classifier. Empirically, we find several different factors of variation that affect the predictions of the smiling classifier. This proof-of-concept demonstrates potential ways generative models can be leveraged for fine-grained analysis of bias and fairness.
Unintended bias in Machine Learning can manifest as systemic differences in performance for different demographic groups, potentially compounding existing challenges to fairness in society at large. In this paper, we introduce a suite of threshold-agnostic metrics that provide a nuanced view of this unintended bias, by considering the various ways that a classifiers score distribution can vary across designated groups. We also introduce a large new test set of online comments with crowd-sourced annotations for identity references. We use this to show how our metrics can be used to find new and potentially subtle unintended bias in existing public models.
215 - Soham Dan , Dushyant Sahoo 2019
Stochastic Gradient Descent has been widely studied with classification accuracy as a performance measure. However, these stochastic algorithms cannot be directly used when non-decomposable pairwise performance measures are used such as Area under the ROC curve (AUC) which is a common performance metric when the classes are imbalanced. There have been several algorithms proposed for optimizing AUC as a performance metric, and one of the recent being a stochastic proximal gradient algorithm (SPAM). But the downside of the stochastic methods is that they suffer from high variance leading to slower convergence. To combat this issue, several variance reduced methods have been proposed with faster convergence guarantees than vanilla stochastic gradient descent. Again, these variance reduced methods are not directly applicable when non-decomposable performance measures are used. In this paper, we develop a Variance Reduced Stochastic Proximal algorithm for AUC Maximization (textsc{VRSPAM}) and perform a theoretical analysis as well as empirical analysis to show that our algorithm converges faster than SPAM which is the previous state-of-the-art for the AUC maximization problem.
In recommendation systems, one is interested in the ranking of the predicted items as opposed to other losses such as the mean squared error. Although a variety of ways to evaluate rankings exist in the literature, here we focus on the Area Under the ROC Curve (AUC) as it widely used and has a strong theoretical underpinning. In practical recommendation, only items at the top of the ranked list are presented to the users. With this in mind, we propose a class of objective functions over matrix factorisations which primarily represent a smooth surrogate for the real AUC, and in a special case we show how to prioritise the top of the list. The objectives are differentiable and optimised through a carefully designed stochastic gradient-descent-based algorithm which scales linearly with the size of the data. In the special case of square loss we show how to improve computational complexity by leveraging previously computed measures. To understand theoretically the underlying matrix factorisation approaches we study both the consistency of the loss functions with respect to AUC, and generalisation using Rademacher theory. The resulting generalisation analysis gives strong motivation for the optimisation under study. Finally, we provide computation results as to the efficacy of the proposed method using synthetic and real data.
154 - Sheng Wang , Siqi Sun , Jinbo Xu 2015
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This manuscript presents Deep Convolutional Neural Fields (DeepCNF), a combination of DCNN with Conditional Random Field (CRF), for sequence labeling with highly imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on highly imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. We then test our AUC-maximized DeepCNF on three very different protein sequence labeling tasks: solvent accessibility prediction, 8-state secondary structure prediction, and disorder prediction. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also have similar performance as the other two training methods on the solvent accessibility prediction problem which has three equally-distributed labels. Furthermore, our experimental results also show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا