Do you want to publish a course? Click here

Complex Rotational Modulation of Rapidly Rotating M-Stars Observed with TESS

86   0   0.0 ( 0 )
 Added by Zhuchang Zhan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have searched for short periodicities in the light curves of stars with $T_{rm eff}$ cooler than 4000 K made from 2-minute cadence data obtained in TESS sectors 1 and 2. Herein we report the discovery of 10 rapidly rotating M-dwarfs with highly structured rotational modulation patterns among 10 M dwarfs found to have rotation periods less than 1 day. Star-spot models cannot explain the highly structured periodic variations which typically exhibit between 10 and 40 Fourier harmonics. A similar set of objects was previously reported following K2 observations of the Upper Scorpius association (Stauffer et al. 2017). We examine the possibility that the unusual structured light-curves could stem from absorption by charged dust particles that are trapped in or near the stellar magnetosphere. We also briefly explore the possibilities that the sharp structured features in the lightcurves are produced by extinction by coronal gas, by beaming of the radiation emitted from the stellar surface, or by occultations of spots by a dusty ring that surrounds the star. The latter is perhaps the most promising of these scenarios. Most of the structured rotators display flaring activity, and we investigate changes in the modulation pattern following the largest flares. As part of this study, we also report the discovery of 371 rapidly rotating M-dwarfs with rotational periods below 4 hr, of which the shortest period is 1.63 hr.



rate research

Read More

Light curves and periodograms of 160 B stars observed by the TESS space mission and 29 main-sequence B stars from Kepler and K2 were used to classify the variability type. There are 114 main-sequence B stars in the TESS sample, of which 45 are classified as possible rotational variables. This confirms previous findings that a large fraction (about 40 percent) of A and B stars may exhibit rotational modulation. Gaia DR2 parallaxes were used to estimate luminosities, from which the radii and equatorial rotational velocities can be deduced. It is shown that observed values of the projected rotational velocities are lower than the estimated equatorial velocities for nearly all the stars, as they should be if rotation is the cause of the light variation. We conclude that a large fraction of main-sequence B stars appear to contain surface features which cannot likely be attributed to abundance patches.
New sets of young M dwarfs with complex, sharp-peaked, and strictly periodic photometric modulations have recently been discovered with Kepler/K2 and TESS data. All of these targets are part of young star-forming associations. Suggested explanations range from accretion of dust disks to co-rotating clouds of material to stellar spots getting periodically occulted by spin-orbit-misaligned dust disks. Here we provide a comprehensive overview of all aspects of these hypotheses, and add more observational constraints in an effort to understand these objects with photometry from TESS and the SPECULOOS Southern Observatory (SSO). We scrutinize the hypotheses from three different angles: (1) we investigate the occurrence rates of these scenarios through existing young star catalogs; (2) we study the longevity of these features using over one year of combined photometry from TESS and SSO; and (3) we probe the expected color dependency with multi-color photometry from SSO. In this process, we also revisit the stellar parameters accounting for activity effects, study stellar flares as activity indicators over year-long time scales, and develop toy models to imitate typical morphologies. We identify which parts of the hypotheses hold true or are challenged by these new observations. So far, none of the hypotheses stand out as a definite answer, and each come with limitations. While the mystery of these complex rotators remains, we here add valuable observational pieces to the puzzle for all studies going forward.
Since the end of 2018, the Transiting Exoplanet Survey Satellite (TESS) provides high-quality space data on stellar photometry to the astronomical community. We present the results of an analysis of TESS photometric data for known slowly rotating magnetic chemically peculiar (mCP) stars. In general, mCP stars show an inhomogeneous distribution of elements in their stellar atmospheres that leads to spectroscopic (line profile) and photometric (light curve) variations over the rotation period. In the frame of the oblique magnetic rotator (OMR) model, patches of enhanced chemical abundance on the stellar surface reveal the frequency of stellar rotation. Using this approach, we have compiled a list of slowly rotating mCP stars with rotation periods longer than two days from the analysis of the photometric data provided by TESS for the first eight sectors of observations. Slowly rotating mCP stars usually possess a hydrodynamically stable stellar atmosphere where a magnetic field can amplify the process of atomic diffusion and leads to the horizontal and vertical stratification of chemical abundances.
Recent observations of rapidly rotating stars have revealed the presence of regular patterns in their pulsation spectra. This has raised the question as to their physical origin, and in particular, whether they can be explained by an asymptotic frequency formula for low-degree acoustic modes, as recently discovered through numerical calculations and theoretical considerations. In this context, a key question is whether compositional/density gradients can adversely affect such patterns to the point of hindering their identification. To answer this question, we calculate frequency spectra using two-dimensional ESTER stellar models. These models use a multi-domain spectral approach, allowing us to easily insert a compositional discontinuity while retaining a high numerical accuracy. We analyse the effects of such discontinuities on both the frequencies and eigenfunctions of pulsation modes in the asymptotic regime. We find that although there is more scatter around the asymptotic frequency formula, the semi-large frequency separation can still be clearly identified in a spectrum of low-degree acoustic modes.
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا