Do you want to publish a course? Click here

Process estimation in qubit systems: a quantum decision theory approach

48   0   0.0 ( 0 )
 Added by Matteo G. A. Paris
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address quantum decision theory as a convenient framework to analyze process discrimination and estimation in qubit systems. In particular we discuss the following problems: i) how to discriminate whether or not a given unitary perturbation has been applied to a qubit system; ii) how to determine the amplitude of the minimum detectable perturbation. In order to solve the first problem, we exploit the so-called Bayes strategy, and look for the optimal measurement to discriminate, with minimum error probability, whether or not the unitary transformation has been applied to a given signal. Concerning the second problem, the strategy of Neyman and Pearson is used to determine the ultimate bound posed by quantum mechanics to the minimum detectable amplitude of the qubit transformation. We consider both pure and mixed initial preparations of the qubit, and solve the corresponding binary decision problems. We also analyze the use of entangled qubits in the estimation protocol and found that entanglement, in general, improves stability rather than precision. Finally, we take into account the possible occurrence of different kinds of background noise and evaluate the corresponding effects on the discrimination strategies.



rate research

Read More

We present an example of quantum process tomography (QPT) performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the chi matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted. The results of QPT performed after three different decoherence times are used to find the error generators, or Lindblad operators, for the system, using the technique introduced by Boulant et al. [N. Boulant, T.F. Havel, M.A. Pravia and D.G. Cory, Phys. Rev. A 67, 042322 (2003)].
171 - M. Sohaib Alam 2019
Reinforcement learning has witnessed recent applications to a variety of tasks in quantum programming. The underlying assumption is that those tasks could be modeled as Markov Decision Processes (MDPs). Here, we investigate the feasibility of this assumption by exploring its consequences for two of the simplest tasks in quantum programming: state preparation and gate compilation. By forming discrete MDPs, focusing exclusively on the single-qubit case, we solve for the optimal policy exactly through policy iteration. We find optimal paths that correspond to the shortest possible sequence of gates to prepare a state, or compile a gate, up to some target accuracy. As an example, we find sequences of H and T gates with length as small as 11 producing ~99% fidelity for states of the form (HT)^{n} |0> with values as large as n=10^{10}. This work provides strong evidence that reinforcement learning can be used for optimal state preparation and gate compilation for larger qubit spaces.
There is a long history of representing a quantum state using a quasi-probability distribution: a distribution allowing negative values. In this paper we extend such representations to deal with quantum channels. The result is a convex, strongly monoidal, functorial embedding of the category of trace preserving completely positive maps into the category of quasi-stochastic matrices. This establishes quantum theory as a subcategory of quasi-stochastic processes. Such an embedding is induced by a choice of minimal informationally complete POVMs. We show that any two such embeddings are naturally isomorphic. The embedding preserves the dagger structure of the categories if and only if the POVMs are symmetric, giving a new use of SIC-POVMs, objects that are of foundational interest in the QBism community. We also study general convex embeddings of quantum theory and prove a dichotomy that such an embedding is either trivial or faithful.
We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the $chi$ matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted.
Quasiprobability distributions (QDs) in open quantum systems are investigated for $SU(2)$, spin like systems, having relevance to quantum optics and information. In this work, effect of both quantum non-demolition (QND) and dissipative open quantum systems, on the evolution of a number of spin QDs are investigated. Specifically, compact analytic expressions for the $W$, $P$, $Q$, and $F$ functions are obtained for some interesting single, two and three qubit states, undergoing general open system evolutions. Further, corresponding QDs are reported for an N qubit Dicke model and a spin-1 system. The existence of nonclassical characteristics are observed in all the systems investigated here. The study leads to a clear understanding of quantum to classical transition in a host of realistic physical scenarios. Variation of the amount of nonclassicality observed in the quantum systems, studied here,are also investigated using nonclassical volume.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا