Long-lived circulating currents in strongly correlated nanorings


Abstract in English

We study the time evolving currents flowing in an interacting, ring-shaped nanostructure after a bias voltage has been switched on. The source-to-drain current exhibits the expected relaxation towards its quasi-static equilibrium value at a rate $Gamma_0$ reflecting the lead-induced broadening of the ring states. In contrast, the current circulating within the ring decays with a different rate $Gamma$, which is a rapidly decaying function of the interaction strength and thus can take values orders of magnitude below $Gamma_0$. This implies the existence of a regime in which the nanostructure is far from equilibrium even though the transmitted current is already stationary. We discuss experimental setups to observe the long-lived ring transients.

Download