Do you want to publish a course? Click here

Enhancing the efficiency of adiabatic quantum computations

156   0   0.0 ( 0 )
 Added by Raouf Dridi Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a general methodology for enhancing the efficiency of adiabatic quantum computations (AQC). It consists of homotopically deforming the original Hamiltonian surface in a way that the redistribution of the Gaussian curvature weakens the effect of the anti-crossing, thus yielding the desired improvement. Our approach is not pertubative but instead is built on our previous global description of AQC in the language of Morse theory. Through the homotopy deformation we witness the birth and death of critical points whilst, in parallel, the Gauss-Bonnet theorem reshuffles the curvature around the changing set of critical points. Therefore, by creating enough critical points around the anti-crossing, the total curvature--which was initially centered at the original anti-crossing--gets redistributed around the new neighbouring critical points, which weakens its severity and so improves the speedup of the AQC. We illustrate this on two examples taken from the literature.



rate research

Read More

We import the tools of Morse theory to study quantum adiabatic evolution, the core mechanism in adiabatic quantum computations (AQC). AQC is computationally equivalent to the (pre-eminent paradigm) of the Gate model but less error-prone, so it is ideally suitable to practically tackle a large number of important applications. AQC remains, however, poorly understood theoretically and its mathematical underpinnings are yet to be satisfactorily identified. Through Morse theory, we bring a novel perspective that we expect will open the door for using such mathematics in the realm of quantum computations, providing a secure foundation for AQC. Here we show that the singular homology of a certain cobordism, which we construct from the given Hamiltonian, defines the adiabatic evolution. Our result is based on E. Wittens construction for Morse homology that was derived in the very different context of supersymmetric quantum mechanics. We investigate how such topological description, in conjunction with Gauss-Bonnet theorem and curvature based reformulation of Morse lemma, can be an obstruction to any computational advantage in AQC. We also explore Conley theory, for the sake of completeness, in advance of any known practical Hamiltonian of interest. We conclude with the instructive case of the ferromagnetic $p-$spin where we show that changing its first order quantum transition (QPT) into a second order QPT, by adding non-stoquastic couplings, amounts to homotopically deform the initial surface accompanied with birth of pairs of critical points. Their number reaches its maximum when the system is fully non-stoquastic. In parallel, the total Gaussian curvature gets redistributed (by the Gauss--Bonnet theorem) around the new neighbouring critical points, which weakens the severity of the QPT.
200 - T. Huckle , K. Waldherr , 2012
The computation of the ground state (i.e. the eigenvector related to the smallest eigenvalue) is an important task in the simulation of quantum many-body systems. As the dimension of the underlying vector space grows exponentially in the number of particles, one has to consider appropriate subsets promising both convenient approximation properties and efficient computations. The variational ansatz for this numerical approach leads to the minimization of the Rayleigh quotient. The Alternating Least Squares technique is then applied to break down the eigenvector computation to problems of appropriate size, which can be solved by classical methods. Efficient computations require fast computation of the matrix-vector product and of the inner product of two decomposed vectors. To this end, both appropriate representations of vectors and efficient contraction schemes are needed. Here approaches from many-body quantum physics for one-dimensional and two-dimensional systems (Matrix Product States and Projected Entangled Pair States) are treated mathematically in terms of tensors. We give the definition of these concepts, bring some results concerning uniqueness and numerical stability and show how computations can be executed efficiently within these concepts. Based on this overview we present some modifications and generalizations of these concepts and show that they still allow efficient computations such as applicable contraction schemes. In this context we consider the minimization of the Rayleigh quotient in terms of the {sc parafac} (CP) formalism, where we also allow different tensor partitions. This approach makes use of efficient contraction schemes for the calculation of inner products in a way that can easily be extended to the mps format but also to higher dimensional problems.
458 - Frank Gaitan , Lane Clark 2011
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for $5leq sleq 7$. We then discuss the algorithms experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class QMA.
143 - Amro Dodin , Paul Brumer 2021
We present generalized adiabatic theorems for closed and open quantum systems that can be applied to slow modulations of rapidly varying fields, such as oscillatory fields that occur in optical experiments and light induced processes. The generalized adiabatic theorems show that a sufficiently slow modulation conserves the dynamical modes of time dependent reference Hamiltonians. In the limiting case of modulations of static fields, the standard adiabatic theorems are recovered. Applying these results to periodic fields shows that they remain in Floquet states rather than in energy eigenstates. More generally, these adiabatic theorems can be applied to transformations of arbitrary time-dependent fields, by accounting for the rapidly varying part of the field through the dynamical normal modes, and treating the slow modulation adiabatically. As examples, we apply the generalized theorem to (a) predict the dynamics of a two level system driven by a frequency modulated resonant oscillation, a pathological situation beyond the applicability of earlier results, and (b) to show that open quantum systems driven by slowly turned-on incoherent light, such as biomolecules under natural illumination conditions, can only display coherences that survive in the steady state.
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real time axis, that some number of its time-derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is non-degenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time-derivative of the Hamiltonian, divided by the cube of the minimal gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا